CIS 5200: MACHINE LEARNING KERNELS

Surbhi Goel

Content here draws from material by Jake/Shivani (UPenn), Christopher De Sa (Cornell)

Spring 2023

OUTLINE -TODAY

* Recap of SVMs
* Function Maps
* Kernel Functions
* Kernelization
* Demo!

SVM - SOFT-MARGIN

Primal:

$$
\min _{w, b} \frac{1}{2}\|w\|_{2}^{2}+C \sum_{i=1}^{m} \xi_{i}
$$

such that $\quad y_{i}\left(w^{\top} x_{i}+b\right) \geq 1-\xi_{i}, \forall i \in[m]$ $\xi_{i} \geq 0, \forall i \in[m]$
slack

Dual:

$$
\max _{\alpha} \quad-\frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(x_{i}^{\top} x_{j}\right)+\sum_{i=1}^{m} \alpha_{i}
$$

such that

$$
\begin{aligned}
& \sum_{i=1}^{m} \alpha_{i} y_{i}=0 \\
& 0 \leq \alpha_{i} \leq C, \forall i \in[m]
\end{aligned}
$$

SOFT-SVM - LOSS MINIMIZATIONVIEW

$$
\begin{aligned}
\min _{w, b} & \frac{1}{2}\|w\|_{2}^{2}+C \sum_{i=1}^{m} \xi_{i} \\
\text { such that } & y_{i}\left(w^{\top} x_{i}+b\right) \geq 1-\xi_{i}, \forall i \in[m] \\
& \xi_{i} \geq 0, \forall i \in[m]
\end{aligned}
$$

Is equivalent to the following loss minimization problem for $C=\frac{1}{2 \lambda m}$:

$$
\begin{gathered}
\min _{w, b} \frac{1}{m} \sum_{i=1}^{m} \max \left(0,1-y_{i}\left(w^{\top} x_{i}+b\right)\right)+\lambda\|w\|^{2} \\
\ell_{2} \text {-regularized hinge loss minimization }
\end{gathered}
$$

NON-SEPARABLE

What can we do if data is like this?

FEATURE MAP - MAPTO HIGHER DIMENSIONS

Map data into to a higher dimensional space using feature map ϕ

$$
x \mapsto \phi(x)
$$

What features should we use?

FEATURE MAP - MAPTO HIGHER DIMENSIONS

Consider the following feature map:

$$
\phi(x)=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{1}^{2} \\
x_{2}^{2}
\end{array}\right]
$$

Is the data linearly separable in this feature space?

$$
\text { Let } \begin{aligned}
w= & {[0,0,1,1]^{\top} \text { and } b=r^{2}, \text { then we have } } \\
& w^{\top} \phi(x)+b=x_{1}^{2}+x_{2}^{2}-r^{2}
\end{aligned}
$$

FEATURE MAP - LINEARTO NON-LINEAR

Training data: $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)\right\} \mapsto\left\{\left(\phi\left(x_{1}\right), y_{1}\right), \ldots,\left(\phi\left(x_{m}\right), y_{m}\right)\right\}$
Predictor function: Linear functions $w^{\top} \phi(x)+b$

FEATURE MAP - CHALLENGE

Consider the following feature map:

$$
\phi(x)=\left[\begin{array}{c}
1 \\
x_{1} \\
\vdots \\
x_{d} \\
x_{1}^{2} \\
x_{1} x_{2} \\
\vdots \\
x_{d}^{2}
\end{array}\right]
$$

What is the dimension of this map?

$$
D=(d+1)^{2}
$$

What if we take all monomials to degree r ?

$$
D=(d+1)^{r}
$$

This is huge!

Extension of the previous one to d dimensions

RECALL - SOFT-SVM

With feature map:
$\max _{\alpha} \quad-\frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(x_{i}^{\top} x_{j}\right)+\sum_{i=1}^{m} \alpha_{i}$

$$
\begin{aligned}
\max _{\alpha} & -\frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\phi\left(x_{i}\right)^{\top} \phi\left(x_{j}\right)\right)+\sum_{i=1}^{m} \alpha_{i} \\
\text { such that } & \sum_{i=1}^{m} \alpha_{i} y_{i}=0 \\
& 0 \leq \alpha_{i} \leq C, \forall i \in[m]
\end{aligned}
$$

such that $\quad \sum_{i=1}^{m} \alpha_{i} y_{i}=0$
$0 \leq \alpha_{i} \leq C, \forall i \in[m]$

We only need to compute inner products $\phi\left(x_{i}\right)^{\top} \phi\left(x_{j}\right)$

KERNELTRICK - EXAMPLE

Let's compute inner product:

$$
\phi(x)^{\top} \phi\left(x^{\prime}\right)=1+x^{\top} x^{\prime}+\left(x^{\top} x^{\prime}\right)^{2}
$$

What is the computational cost of this?

KERNEL FUNCTIONS

A kernel is a function $k: \mathscr{X} \times \mathscr{X} \rightarrow \mathbb{R}$ that satisfies:

$$
k\left(x, x^{\prime}\right)=\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle
$$

for some feature map ϕ that maps \mathscr{X} to some inner product space \mathscr{V}.
For data x_{1}, \ldots, x_{m} the kernel matrix $K \in \mathbb{R}^{m \times m}$

$$
K_{i j}=k\left(x_{i}, x_{j}\right)
$$

A kernel k is valid if for any $x_{1}, \ldots, x_{m}: K$ is symmetric and positive semi-definite

$$
K=K^{\top}
$$

KERNELS - EXAMPLES

* Linear:

$$
k\left(x, x^{\prime}\right)=x^{\top} x^{\prime}
$$

* Polynomial: for degree r

$$
k\left(x, x^{\prime}\right)=\left(1+x^{\top} x^{\prime}\right)^{r}
$$

* Gaussian/Random Basis Function (RBF): for some parameter $\sigma>0$

$$
k\left(x, x^{\prime}\right)=\exp \left(-\frac{\left\|x-x^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)
$$

LETS KERNELIZE!

* Show that the solution to your problem lies in the span of the training points, $w=\sum_{i=1}^{m} \alpha_{i} x_{i}$
* Rewrite the algorithm and the predictor so that all training or test points are only accessed in inner-products $\left(x_{i}^{\top} x_{j}\right)$ with other points
* Replace $x_{i}^{\top} x_{j} \rightarrow k\left(x_{i}, x_{j}\right)$ everywhere

EXAMPLE - SOFT-SVM

$$
\max _{\alpha} \quad-\frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(x_{i}^{\top} x_{j}\right)+\sum_{i=1}^{m} \alpha_{i}
$$

such that $\quad \sum_{i=1}^{m} \alpha_{i} y_{i}=0$

$$
0 \leq \alpha_{i} \leq C, \forall i \in[m]
$$

Optimal $w=\sum_{i=1}^{m} \alpha_{i} y_{i} x_{i}$ and prediction function is

$$
\operatorname{sign}\left(w^{\top} x+b\right)=\operatorname{sign}\left(\sum_{i=1}^{m} \alpha_{i} y_{i} x_{i}^{\top} x+b\right)
$$

EXAMPLE - KERNEL SVM

$$
\max _{\alpha} \quad-\frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} k\left(x_{i}, x_{j}\right)+\sum_{i=1}^{m} \alpha_{i}
$$

such that $\quad \sum_{i=1}^{m} \alpha_{i} y_{i}=0$

$$
0 \leq \alpha_{i} \leq C, \forall i \in[m]
$$

Optimal $w=\sum_{i=1}^{m} \alpha_{i} y_{i} \phi\left(x_{i}\right)$ and prediction function is

$$
\operatorname{sign}\left(w^{\top} \phi(x)+b\right)=\operatorname{sign}\left(\sum_{i=1}^{m} \alpha_{i} y_{i} k\left(x_{i}, x\right)+b\right)
$$

EXAMPLE - PERCEPTRON

```
Algorithm 1: Perceptron
    Initialize \(w_{1}=0 \in \mathbb{R}^{d}\)
    for \(t=1,2, \ldots\) do
        if \(\exists i \in[m]\) s.t. \(y_{i} \neq \operatorname{sign}\left(w_{t}^{\top} x_{i}\right)\) then update \(w_{t+1}=w_{t}+y_{i} x_{i}\)
        else output \(w_{t}\)
    end
```

Update is always in the feature space, so $w_{*}=\sum_{i=1}^{m} \alpha_{i} x_{i}$ for some $\alpha \in \mathbb{R}^{m}$
Can we write the algorithm in terms of α ?

EXAMPLE - KERNEL PERCEPTRON

```
Algorithm 2: Perceptron - Dual
    Initialize \(\alpha_{1}=0 \in \mathbb{R}^{d}\)
    for \(t=1,2, \ldots\) do
        if \(\exists i \in\{1, \ldots, m\}\) s.t. \(y_{i} \neq \operatorname{sign}\left(\sum_{j=1}^{m} \alpha_{t j} x_{j}^{\top} x_{i}\right)\) then update \(\alpha_{(t+1) i}=\alpha_{t i}+y_{i}\)
        else output \(\alpha_{t}\)
    end
```

Now we can kernelize this since it only depends on inner products!

EXAMPLE - RIDGE REGRESSION

$$
\min _{w} \frac{1}{m} \sum_{i=1}^{m}\left(y_{i}-w^{\top} x_{i}\right)^{2}+\lambda\|w\|_{2}^{2}=\frac{1}{m}\|Y-X w\|^{2}+\lambda\|w\|_{2}^{2}
$$

Can w be expressed as a linear combination of the input datapoints?
Proof by contradiction!

$$
\text { We have } w=\sum_{i=1}^{m} \alpha_{i} x_{i}=X^{\top} \alpha \text { for some } \alpha
$$

EXAMPLE - RIDGE REGRESSION

$\min _{w} \frac{1}{m} \sum_{i=1}^{m}\left(y_{i}-w^{\top} x_{i}\right)^{2}+\lambda\|w\|_{2}^{2}=\frac{1}{m}\left\|Y-X X^{\top} \alpha\right\|^{2}+\lambda \alpha^{\top} X X^{\top} \alpha$

Each element of $X X^{\top}$ is an inner product $x_{i}^{\top} x_{j}$ for some $i, j \in[m]$

$$
\text { Prediction is } w^{\top} x=\sum_{i=1}^{m} \alpha_{i} x_{i}^{\top} x=\alpha^{\top} X x
$$

EXAMPLE - KERNEL RIDGE REGRESSION

$$
\min _{w} \frac{1}{m} \sum_{i=1}^{m}\left(y_{i}-w^{\top} \phi\left(x_{i}\right)\right)^{2}+\lambda\|w\|_{2}^{2}=\frac{1}{m}\|Y-K \alpha\|^{2}+\lambda \alpha^{\top} K \alpha
$$

Here $K_{i j}=k\left(x_{i}, x_{j}\right)$ is the kernel/gram matrix

$$
\begin{gathered}
\text { Prediction is } w^{\top} \phi(x)=\sum_{i=1}^{m} \alpha_{i} k\left(x_{i}, x\right)=\alpha^{\top} k_{x} \text { where } \\
k_{x}=\left[k\left(x, x_{1}\right) \ldots k\left(x, x_{m}\right)\right]^{\top}
\end{gathered}
$$

By folks at Cornell CS

POWER OF KERNELS

* Show that the solution to your problem lies in the span of the training points, $w=\sum_{i=1}^{m} \alpha_{i} x_{i}$

There is a general theorem called the RepresenterTheorem which tells us when this is true

* Rewrite the algorithm and the predictor so that all training or test points are only accessed in inner-products $\left(x_{i}^{\top} x_{j}\right)$ with other points
* Replace $x_{i}^{\top} x_{j} \rightarrow k\left(x_{i}, x_{j}\right)$ everywhere for a valid kernel k

Super Powerful!

CHALLENGE

* How do we choose a good feature map ϕ ?
* Feature map is the same for all inputs!

Can learn the feature map itself \rightarrow deep learning!

