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OUTLINE - TODAY

Recap of SVMs
Function Maps
Kernel Functions
Kernelization
Demo!
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SVM - SOFT-MARGIN

min
w,b

1
2

∥w∥2
2 + C

m

∑
i=1

ξi

such that yi(w⊤xi + b) ≥ 1 − ξi, ∀i ∈ [m]
ξi ≥ 0,∀i ∈ [m]

ξ = 0

ξ = 0

ξ > 1

ξ > 1

ξ < 1

ξ < 1

Slack

max
α

−
1
2

m

∑
i=1

m

∑
j=1

αiαjyiyj(x⊤
i xj) +

m

∑
i=1

αi

such that
m

∑
i=1

αiyi = 0

0 ≤ αi ≤ C, ∀i ∈ [m]

Dual:

Primal:



4

SOFT-SVM - LOSS MINIMIZATION VIEW

min
w,b

1
2

∥w∥2
2 + C

m

∑
i=1

ξi

such that yi(w⊤xi + b) ≥ 1 − ξi, ∀i ∈ [m]
ξi ≥ 0,∀i ∈ [m]

min
w,b

1
m

m

∑
i=1

max(0,1 − yi(w⊤xi + b)) + λ∥w∥2

Is equivalent to the following loss minimization problem for :C =
1

2λm

-regularized hinge loss minimizationℓ2
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NON-SEPARABLE

x1

x2

r

What can we do if data is like this?
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FEATURE MAP - MAP TO HIGHER DIMENSIONS

Map data into to a higher dimensional 
space using feature map ϕ

x ↦ ϕ(x)

What features should we use?

x1

r
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FEATURE MAP - MAP TO HIGHER DIMENSIONS

x1

Consider the following feature map:

ϕ(x) =

x1
x2

x2
1

x2
2

Is the data linearly separable in this feature space?

r

Let  and , then we have w = [0,0,1,1]⊤ b = r2

w⊤ϕ(x) + b = x2
1 + x2

2 − r2



8

FEATURE MAP - LINEAR TO NON-LINEAR

Training data: {(x1, y1), …, (xm, ym)} ↦ {(ϕ(x1), y1), …, (ϕ(xm), ym)}

Predictor function: Linear functions w⊤ϕ(x) + b
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FEATURE MAP - CHALLENGE

Consider the following feature map:

ϕ(x) =

1
x1
⋮
xd

x2
1

x1x2
⋮
x2

d

Extension of the previous one to  dimensionsd

What is the dimension of this map?
D = (d + 1)2

What if we take all monomials to degree ?r
D = (d + 1)r

This is huge!
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RECALL - SOFT-SVM

max
α

−
1
2

m

∑
i=1

m

∑
j=1

αiαjyiyj(x⊤
i xj) +

m

∑
i=1

αi

such that
m

∑
i=1

αiyi = 0

0 ≤ αi ≤ C, ∀i ∈ [m]

With feature map:

We only need to compute inner products ϕ(xi)⊤ϕ(xj)

max
α

−
1
2

m

∑
i=1

m

∑
j=1

αiαjyiyj(ϕ(xi)⊤ϕ(xj)) +
m

∑
i=1

αi

such that
m

∑
i=1

αiyi = 0

0 ≤ αi ≤ C, ∀i ∈ [m]
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KERNEL TRICK - EXAMPLE

ϕ(x) =

1
x1
⋮
xd

x2
1

x1x2
⋮
x2

d

Let’s compute inner product:

ϕ(x)⊤ϕ(x′ ) = 1 + x⊤x′ + (x⊤x′ )2

What is the computational cost of this?
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KERNEL FUNCTIONS

A kernel is a function  that satisfies:
 

for some feature map  that maps  to some inner product space .

k : 𝒳 × 𝒳 → ℝ
k(x, x′ ) = ⟨ϕ(x), ϕ(x′ )⟩

ϕ 𝒳 𝒱

For data  the kernel matrix x1, …, xm K ∈ ℝm×m

Kij = k(xi, xj)

A kernel  is valid if for any :  is symmetric and positive semi-definitek x1, …, xm K
K = K⊤ For any 

All eigenvalues are non-negative
x, x⊤Kx ≥ 0
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Linear: 

Polynomial: for degree 

Gaussian/Random Basis Function (RBF): for some parameter 

k(x, x′ ) = x⊤x′ 

r
k(x, x′ ) = (1 + x⊤x′ )r

σ > 0

k(x, x′ ) = exp (−
∥x − x′ ∥2

2σ2 )

KERNELS - EXAMPLES
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Show that the solution to your problem lies in the span of the 

training points, 

Rewrite the algorithm and the predictor so that all training or test 
points are only accessed in inner-products ( ) with other points

Replace  everywhere

w =
m

∑
i=1

αixi

x⊤
i xj

x⊤
i xj → k(xi, xj)

LETS KERNELIZE!



15

EXAMPLE - SOFT-SVM

max
α

−
1
2

m

∑
i=1

m

∑
j=1

αiαjyiyj(x⊤
i xj) +

m

∑
i=1

αi

such that
m

∑
i=1

αiyi = 0

0 ≤ αi ≤ C, ∀i ∈ [m]

Optimal  and prediction function isw =
m

∑
i=1

αiyixi

𝗌𝗂𝗀𝗇(w⊤x + b) = 𝗌𝗂𝗀𝗇 (
m

∑
i=1

αiyix⊤
i x + b)



16

EXAMPLE - KERNEL SVM

max
α

−
1
2

m

∑
i=1

m

∑
j=1

αiαjyiyjk(xi, xj) +
m

∑
i=1

αi

such that
m

∑
i=1

αiyi = 0

0 ≤ αi ≤ C, ∀i ∈ [m]

Optimal  and prediction function isw =
m

∑
i=1

αiyiϕ(xi)

𝗌𝗂𝗀𝗇(w⊤ϕ(x) + b) = 𝗌𝗂𝗀𝗇 (
m

∑
i=1

αiyik(xi, x) + b)
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EXAMPLE - PERCEPTRON

Update is always in the feature space, so  for some w* =
m

∑
i=1

αixi α ∈ ℝm

Can we write the algorithm in terms of ?α
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EXAMPLE - KERNEL PERCEPTRON

Now we can kernelize this since it only depends on inner products!
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EXAMPLE - RIDGE REGRESSION

min
w

1
m

m

∑
i=1

(yi − w⊤xi)2 + λ∥w∥2
2 =

1
m

∥Y − Xw∥2 + λ∥w∥2
2

Can  be expressed as a linear combination of the input datapoints?w

Proof by contradiction!

We have  for some w =
m

∑
i=1

αixi = X⊤α α
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min
w

1
m

m

∑
i=1

(yi − w⊤xi)2 + λ∥w∥2
2 =

1
m

∥Y − XX⊤α∥2 + λα⊤XX⊤α

Each element of  is an inner product  for some XX⊤ x⊤
i xj i, j ∈ [m]

Prediction is w⊤x =
m

∑
i=1

αix⊤
i x = α⊤Xx

EXAMPLE - RIDGE REGRESSION
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min
w

1
m

m

∑
i=1

(yi − w⊤ϕ(xi))2 + λ∥w∥2
2 =

1
m

∥Y − Kα∥2 + λα⊤Kα

Here  is the kernel/gram matrixKij = k(xi, xj)

Prediction is  where w⊤ϕ(x) =
m

∑
i=1

αik(xi, x) = α⊤kx

kx = [k(x, x1)…k(x, xm)]⊤

EXAMPLE - KERNEL RIDGE REGRESSION
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DEMO
By folks at Cornell CS

https://www.cs.cornell.edu/courses/cs4780/2022sp/notes/classifiers.html?method=1nn&svmc=0.5&rbfscale=0.5&polydeg=1&points=%255B%255B0.4%252C0.6%252C1%255D%252C%255B0.7%252C-0.4%252C1%255D%252C%255B-0.3%252C0.1%252C-1%255D%255D
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Show that the solution to your problem lies in the span of the 

training points, 

Rewrite the algorithm and the predictor so that all training or test 
points are only accessed in inner-products ( ) with other points

Replace  everywhere for a valid kernel 

w =
m

∑
i=1

αixi

x⊤
i xj

x⊤
i xj → k(xi, xj) k

POWER OF KERNELS

There is a general theorem called 
the Representer Theorem which 

tells us when this is true

Super Powerful!
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How do we choose a good feature map ?

Feature map is the same for all inputs!

ϕ

CHALLENGE

Can learn the feature map itself  deep learning!→


