9 February 2023

CIS 5200: MACHINE LEARNING
KERNELS

Surbhi Goel

Content here draws from material by Jake/Shivani (UPenn),
Christopher De Sa (Cornell)

Spring 2023




OUTLINE - TODAY
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*k Function Maps
% Kernel Functions

% Kernelization
% Demol



SVM - SOF -MARGIN

Primal: | .
min  —[wl3+C) &
w,b ) .
=1
such that y(w'x;+b) > 1—&,Vi € [m] @
£.>0,Yi € [m)] P )
Slack ‘
Dual: ® x )
1 m m m ","' ‘
mjx ) Z Z 00,y Y{(X; X;) + Z Qa; g = O‘ &< 1
=1 j=I1 i—1

such that Z ay, =0

0 <a; < CVié€ [m]



SOF[-SVM - LOSS MINIMIZATION VIEW
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£ »-regularized hinge loss minimization




NON-SEPARABLE
What can we do if data is like this?




FEATURE MAP - MAP TO HIGHER DIMENSIONS

Ma

b data Into to a higher ¢

S

VWhat features shoulc

bace using feature ma

X = P(x)

imensional

D ¢

we use!




FEATURE MAP - MAP TO HIGHER DIMENSIONS

Consider the following feature map:
A
X2

P(x) = X2 <

Xy

s the data linearly separable In this feature space?

Let w = [0,0,1,1]1" and b = r?, then we have !

w' d(x)+b = x12 +x22 — 7



FEATURE MAP - LINEAR TO NON-LINEAR

Training data: {(x},y)), ..., (X, y,)} = {(@(x)), y)), ..., (@(x,), V) }

Predictor function: Linear functions w'¢@(x) + b
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FEATURE MAP - CHALLENGE

Consider the following feature map:

|
X1
. What Is the dimension of this map?
Xd D= (d+ 1)
X) = 2 | |
P X1 What if we take all monomials to degree 7!
XX
2 D=(d+1)
. Ihis is huge!
Xg

-xtension of the previous one to d dimensions
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RECALL - SOFI-5VM

With feature map:

1 m m m 1 m m
mo?x 5 Z Z aiajyiyj(xl-ij) + Z Qa; mo?X ) Z Z oy V(P (x; )Tgb(x )) + Z Q;
=1 j=1 =1 =1 j=I1
such that Z a;y; = 0 such that Z a;y; = 0
0<a<CVie[m] 0<a<CVie|[m]

We only need to compute inner products gb(xi)Tgb(xj)



KERNEL TRICK - EXAMPLE

1
X Let's compute Inner product:
Ad ¢(x)T¢(x’) =1 +x'x'+ ()ch’)2
PX) =] 2
A1X2
:2 What is the computational cost of this?
Ad



KERNEL FUNCTIONS

A kernel is a function k : & X & — R that satisfies:
k(x,x) = (Pp(x), p(x'))

for some feature map @ that maps & to some inner product space 7.

Rm)(m

For data xy, ..., x,, the kernel matrix K €
K= k(x;, xj)

A kernel k is valid if for any x;, ..., x,: K Is symmetric and positive semi-definite

K=K' For any x,x ' Kx > 0
All eigenvalues are non-negative



KERNELS - EXAMPLES

% Linear:
k(x,x") = x"x’

> Polynomial: for degree r
k(x,x) = (1 +x'x)"

> Gaussian/Random Basis Function (RBF): for some parameter ¢ > 0

Y A e &
(.X,.X) — CXP —2—02
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[ ETS KERNELIZE!

*k Show that the solution to your

m
training points, w = Z aX;
=1

*k Rewrite the algorithm and the

T

broblem lies In the span of the

bredictor so that all training or test

boints are only accessed In Inner-products (xiij) with other

*k Replace x; x; = k(x;, x;) everywhere

L)

NDOINTS




EXAMPLE - SOFI-5VM

1 m m

mo?x > Z Z o0y VX,

=1 j=1

0<a <C,Vie|m]

m
Optimal w = Z Q;y;X; anc
=1

sigh(w'x + b) = sign (
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DIred

=1

iction function 1s

Z a;yx; X + b)



EXAMPLE - KERNEL SVM

m m

mo?x —% Z Z oY,V ik(X;, X;) + Z Qa;

=1 j=1

0<a <C,Vie|m]

Optimal w = Z . y:(x;) anc

DIred

iction function 1s

sigh(w ' ¢p(x) + b) = sign ( i . y:k(x:, x) + b)
i=1
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EXAMPLE - PERCEPTRON

UpcC

Algorithm 1: Perceptron
Initialize w; = 0 € R?
fort=1,2,... do
if di € [m| s.t. y; # sign ('w,;r acz) then update w;y1 = wy + yix;
else output wy

end

m
ate 1s always In the feature space, sO Wy = Z a.x; for some a € R™
i=1

Can we write the algorithm in terms of o/

|/



EXAMPLE - KERNEL PERCEP TRON

Algorithm 2: Perceptron - Dual

Initialize a1 = 0 € R
fort=1,2,...do

if 32 € {1,...,m} s.t. y; # sign (E;"’zl at]-a:;-ra:z-) then update o1y = aui + ¥

else output oy
end

Now we can kernelize this since it only depends on inner products!




EXAMPLE - RIDGE REGRESSION

1Y 1
min - — ) ;= w'x)’ +Alwlz ==Y = Xwl® + Allwll3
nm m

v i=1

Can w be expressed as a linear combination of the input datapoints?

°roof by contradiction!

m
We have w = Z ax; = X aforsome a

=1



EXAMPLE - RIDGE REGRESSION

1
min —Z(y, wTx)? + Allwl|3 = —|IY - XXTa|? + 1a XX T«

v =1

Fach element of XX ' is an inner product xl-"xj forsome 1,7 € |m]

Drediction is w ' x = 2 X, 'y =a'Xx
=1
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EXAMPLE - KERNEL RIDGE REGRESSION

I & |
min - — ) (,—w' ¢ + Allwl} ==Y - Ka||* + Aa"Ka
m 1 m

w

Here K;; = k(x;, X;) is the kernel/gram matrix

Prediction is w ' @(x) = Z ak(x;, x) = a k. where

k. = [k(x, x1=)1 ki, )17

2|



DEMO

By folks at Cornell CS
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https://www.cs.cornell.edu/courses/cs4780/2022sp/notes/classifiers.html?method=1nn&svmc=0.5&rbfscale=0.5&polydeg=1&points=%255B%255B0.4%252C0.6%252C1%255D%252C%255B0.7%252C-0.4%252C1%255D%252C%255B-0.3%252C0.1%252C-1%255D%255D

POWER OF KERNELS TE

*k Show that the solution to your problem lies in the span of the

m
o . o Ihere is a general theorem called
trammg DOINTS, W = A X; the Representer [heorem which
=1

tells us when this is true

*k Rewrite the algorithm and the predictor so that all training or test

boINts are only accessed In INner-products (xiij) with other points

T :
* Replace x;' x; — k(x;, x;) everywhere for a valid kernel k

Super Powerful
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CHALLENGE

* How do we choose a good feature map ¢@?

2% Feature map Is the same for all inputs!

Can learn the feature map itself — ¢
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cC

O learning!




