CIS 5200: MACHINE LEARNING

LINEAR AND LOGISTIC REGRESSION

Surbhi Goel

Content here draws from material by Vatsal Sharan (USC), Christopher De Sa and Kilian Weinberger (Cornell)

Spring 2023

LOGISTICS - UPCOMING

Homework:

* HW0 due on Friday, Jan 20, 2023 end of day
* For those on waitlist, email your HW0 to Keshav and Wendi (head TAs)
* HWI will be out on Monday, Jan 23, 2023

Recitation:

* Sign up link will be posted on Ed this Friday
* Math background recitation next week

Instructor OH:

* Eric and I will run joint office hours after class on Tuesdays 3:30-4:30

OUTLINE -TODAY

* Quick Review of Perceptron
* Logistic Regression
* MLE perspective
* Linear Regression
* Least squares solution
* MLE perspective
* Regularization

PERCEPTRON - SUMMARY

Input space: $\mathscr{X} \subseteq \mathbb{R}^{d}$
Output space: $\mathscr{Y}=\{-1,1\}$
Hypothesis Class: $\mathscr{F}:=\left\{x \mapsto \operatorname{sign}\left(w^{\top} x+b\right) \mid w \in \mathbb{R}^{d}, b \in \mathbb{R}\right\}$
Loss function: $\ell(f(x), y)= \begin{cases}0 & \text { if } f(x)=y \\ 1 & \text { otherwise. }\end{cases}$
Assumption: Linearly separable data
Guarantee: Zero-error on training data after $1 / \gamma^{2}$ iterations for margin γ

PERCEPTRON - FAILURES

XOR:

Minsky and Papert in a 1969 book "Perceptrons" showed that Perceptron fails on $X \bigcirc$ R problems

Non-linearly separable data: Kernels (later in class)
Separable in a lifted space
Noise:
Hard classifier, cannot model inherent noise

NON-DETERMINISTIC INPUTS

Perceptron assumed deterministic labels
But there may be inherent uncertainty in the label

© Machine Learning @ Berkeley
We can model this uncertainty using some function $\eta(x)=P(y=1 \mid x)$

LOGISTIC FUNCTION

We can model $\eta(x)=P(y=1 \mid x)$ using different functions

$$
\underset{\text { Step function }}{\operatorname{sign}_{0 / 1}(a)}= \begin{cases}1 & \text { if } a \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

$$
\operatorname{sigmoid}(a)=\frac{1}{1+\exp (-a)}
$$

Sigmoid function

$$
\begin{aligned}
& P(y=1 \mid x)=\eta(x)=\operatorname{sigmoid}\left(w^{\top} x\right)=\frac{1}{1+\exp \left(-w^{\top} x\right)} \\
& P(y=-1 \mid x)=1-\eta(x)=1-\operatorname{sigmoid}\left(w^{\top} x\right)=\frac{1}{1+\exp \left(w^{\top} x\right)}
\end{aligned}
$$

Sigmoid function (continuous)

More unsure near the decision boundary

Like perceptron away from the decision boundary

DECISION BOUNDARY

How do we decide the label given the logistic model?

$$
\begin{aligned}
& \frac{P(y=+1 \mid x)}{P(y=-1 \mid x)}=\frac{1+\exp \left(w^{\top} x\right)}{1+\exp \left(-w^{\top} x\right)}=\exp \left(w^{\top} x\right) \quad=1 \text { when } w^{\top} x=0 \\
& \text { Linear decision boundary }
\end{aligned}
$$

LOSS FUNCTION

Logistic Loss

$$
\ell(f(x), y)= \begin{cases}-\log (f(x)) & \text { if } y=1 \\ -\log (1-f(x)) & \text { otherwise }\end{cases}
$$

For our setting logistic loss is $\log \left(1+\exp \left(-y w^{\top} x\right)\right)$

0/I Loss

$$
\ell_{0 / 1}(f(x), y)=1[f(x) \neq y]
$$

For linear classifier this is $1\left[\operatorname{sgn}\left(w^{\top} x\right) \neq y\right]=1\left[y w^{\top} x<0\right]$

Logistic loss is an upper bound of $0 / 1$ loss

PROBABILISTIC VIEW - MAXIMUM LIKELIHOOD ESTIMATOR

Another way to view the supervised learning task is to maximize the likelihood of seeing the training data

* Make an explicit modeling condition on the data distribution
* Find parameters that maximize the probability of seeing the data

Suppose the parameters of the model are denoted by θ

$$
\begin{aligned}
\hat{\mathscr{L}}(\theta) & =P(S \mid \theta) & & S \text { is the training data } \\
& =\prod_{i=1}^{m} P\left(x_{i}, y_{i} \mid \theta\right) & & \text { Training data is i.i.d. }
\end{aligned}
$$

MAXIMUM (CONDITIONAL) LOG LIKELIHOOD

Suppose we don't have any assumption on the generation process of x, then we can maximize a conditional likelihood

$$
\hat{\mathscr{L}}(\theta)=\prod_{i=1}^{m} P\left(y_{i} \mid x_{i}, \theta\right)
$$

The log-likelihood is then equivalent to:

$$
\begin{aligned}
\log \hat{\mathscr{L}}(\theta) & =\log \left(\prod_{i=1}^{m} P\left(y_{i} \mid x_{i}, \theta\right)\right) \\
& =\sum_{i=1}^{m} \log \left(P\left(y_{i} \mid x_{i}, \theta\right)\right)
\end{aligned}
$$

\log is an increasing function Maximizers of both are identical

M(C)LE - LOGISTIC REGRESSION

We have the model for $P(y \mid x, w)$, substituting it gives us

$$
\begin{aligned}
\log \hat{\mathscr{L}}(w) & =\sum_{i=1}^{m} \log \left(P\left(y_{i} \mid x_{i}, w\right)\right) \\
& =\sum_{i=1}^{m} \log \left(\frac{1}{1+\exp \left(-y_{i} w^{\top} x_{i}\right)}\right) \\
& =-\sum_{i=1}^{m} \log \left(1+\exp \left(-y_{i} w^{\top} x_{i}\right)\right)
\end{aligned}
$$

This is the negative of the logistic loss!

$$
\max \log \hat{\mathscr{L}}(w)=\min \hat{R}(w)
$$

LOGISTIC REGRESSION -TRAINING

Training Dataset: $\mathcal{S}=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{m}, y_{m}\right)\right\}$, $x_{i} \in \mathbb{R}^{d}, y_{i} \in\{-1,1\}$

Empirical Risk Minimization: Find \hat{w} that minimizes

$$
\widehat{R}(w)=\frac{1}{m} \sum_{i=1}^{m} \log \left(1+\exp \left(-y_{i} w^{\top} x_{i}\right)\right)
$$

How do we solve this minimization problem?
The problem is convex so we can use convex optimization (will discuss in later lectures)

LOGISTIC REGRESSION - SUMMARY

Input space: $\mathscr{X} \subseteq \mathbb{R}^{d}$

Perceptron

Output space: $\mathscr{Y}=[0,1] \quad \mathscr{Y}=\{-1,1\}$
Hypothesis Class: $\mathscr{F}:=\left\{x \mapsto \operatorname{sigmoid}\left(w^{\top} x+b\right) \mid w \in \mathbb{R}^{d}, b \in \mathbb{R}\right\}$

$$
\mathscr{F}:=\left\{x \mapsto \operatorname{sign}\left(w^{\top} x+b\right) \mid w \in \mathbb{R}^{d}, b \in \mathbb{R}\right\}
$$

Loss function: $\ell(f(x), y)= \begin{cases}-\log (f(x)) & \text { if } y=1 \\ -\log (1-f(x)) & \text { otherwise }\end{cases}$

$$
\ell(f(x), y)= \begin{cases}0 & \text { if } f(x)=y \\ 1 & \text { otherwise. }\end{cases}
$$

SUPERVISED LEARNING

Predict future outcomes based on past outcomes

Inputs $x \in \mathscr{X}$

Labels $y \in \mathscr{Y}$

$$
\begin{gathered}
(y=\text { Breeds) } \\
\text { "Pug" } \\
\text { "Chihuahua" }
\end{gathered}
$$

$$
\begin{gathered}
(y=\text { Stock prices }) \\
\text { "\$ } 130.02 "
\end{gathered}
$$

Classification

Discrete labels

Regression

Continuous labels

Task: Learn predictor $f: \mathscr{X} \rightarrow \mathscr{Y}$

HYPOTHESIS CLASS - LINEAR REGRESSORS

Similar to perceptron, can ignore bias
Linear regressors $\mathscr{F}:=\left\{x \mapsto w^{\top} x+b \mid w \in \mathbb{R}^{d}, b \in \mathbb{R}\right\}$

Data from https://nsidc.org/arcticseaicenews/sea-ice-tools/

LOSS FUNCTION

Square Loss

$$
\ell(f(x), y)=(f(x)-y)^{2}
$$

$$
\text { Square-loss }=\frac{d_{1}^{2}+d_{2}^{2}+d_{3}^{2}+d_{4}^{2}+d_{5}^{2}}{5}
$$

Absolute Loss

$$
\ell(f(x), y)=|f(x)-y|
$$

Absolute-loss $=\frac{\left|d_{1}\right|+\left|d_{2}\right|+\left|d_{3}\right|+\left|d_{4}\right|+\left|d_{5}\right|}{5}$

How does square loss behave on outliers?

LINEAR REGRESSION - TRAINING

Training Dataset: $\mathcal{S}=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{m}, y_{m}\right)\right\}, x_{i} \in \mathbb{R}^{d}, y_{i} \in \mathbb{R}$

Empirical Risk Minimization: Find \hat{w} that minimizes

$$
\widehat{R}(w)=\frac{1}{m} \sum_{i=1}^{m}\left(y_{i}-w^{\top} x_{i}\right)^{2}
$$

How do we solve this minimization problem?

The problem is convex, in fact we can get a closed form solution

LEAST SQUARES

Loss is convex \Longrightarrow differentiate to find minimizer

$$
\begin{aligned}
& \text { Take derivative } \\
& \text { and set to } 0 \\
& \frac{2}{m} \sum_{i=1}^{m}\left(w^{\top} x_{i}-y_{i}\right) x_{i}=0 \\
& \Longrightarrow\left(\sum_{i=1}^{m} x_{i} x_{i}^{\top}\right) w=\sum_{i=1}^{m} y_{i} x_{i} \\
& \text { Let } X=\left[\begin{array}{c}
-x_{1}^{\top}- \\
-x_{2}^{\top}- \\
\vdots \\
-x_{m}^{\top}-
\end{array}\right] \in \mathbb{R}^{m \times d}, Y=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right] \in \mathbb{R}^{m \times 1} \\
& \text { Matrix notation } \downarrow \\
& X^{\top} X w=X^{\top} Y \\
& \text { Normal Equations for } \\
& \text { Least Squares Regression }
\end{aligned}
$$

SOLVINGTHE SYSTEM

$$
X=\left[\begin{array}{c}
-x_{1}^{\top}- \\
-x_{2}^{\top}- \\
\vdots \\
-x_{m}^{\top}-
\end{array}\right] \in \mathbb{R}^{m \times d}, Y=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right] \in \mathbb{R}^{m}
$$

Normal Equations for
Least Squares Regression

$$
X^{\top} X w=X^{\top} Y
$$

If $X^{\top} X$ is invertible, then

$$
\hat{w}=\left(X^{\top} X\right)^{-1} X^{\top} Y
$$

$\hat{Y}=X \hat{w}$ is the projection of Y onto the subspace spanned by the columns of $X, \tilde{x}_{1}, \ldots \tilde{x}_{d}$ where $\tilde{x}_{j}=\left[x_{1 j}, \ldots, x_{m j}\right]^{\top}$
Recall that $X\left(X^{\top} X\right)^{-1} X$ is the projection matrix on to this subspace
What is the computational cost of computing this?

LINEAR REGRESSION - REGULARIZATION

What if $X^{\top} X$ is very close to being singular?

This can lead to large values for $\hat{\boldsymbol{w}}$ which might overfit

$$
\widehat{G}(w)=\widehat{R}(w)+\lambda \psi(w)=\frac{1}{m} \sum_{i=1}^{m}\left(y_{i}-w^{\top} x_{i}\right)^{2}+\lambda \psi(w)
$$

$\psi(w)$ is chosen to be some function that penalizes complexity of w
Common examples include: $\psi(w)=\|w\|_{2}^{2}$ or $\psi(w)=\|w\|_{1}$

RIDGE REGRESSION

$$
X=\left[\begin{array}{c}
-x_{1}^{\top}- \\
-x_{2}^{\top}- \\
\vdots \\
-x_{m}^{\top}-
\end{array}\right] \in \mathbb{R}^{m \times d}, Y=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right] \in \mathbb{R}^{m \times 1}
$$

$$
\left.\widehat{G}(w)=\frac{1}{m} \sum_{i=1}^{m}\left(y_{i}-w^{\top} x_{i}\right)^{2}+\lambda\|w\|_{2}^{2} \xrightarrow{\substack{\text { Take derivative } \\
\text { and set to } 0}} \quad \Longrightarrow \begin{array}{l}
\frac{2}{m} \sum_{i=1}^{m}\left(w^{\top} x_{i}-y_{i}\right) x_{i}+2 \lambda w=0 \\
\hline
\end{array} \sum_{i=1}^{m} x_{i} x_{i}^{\top}+\lambda m I\right) w=\sum_{i=1}^{m} y_{i} x_{i}
$$

Matrix notation \downarrow

$$
\left(X^{\top} X+\lambda m I\right) w=X^{\top} Y
$$

$$
\hat{w}_{\lambda}=\left(X^{\top} X+\lambda m I\right)^{-1} X^{\top} Y
$$

Always invertible, eigenvalues are $\geq \lambda m$

LASSO REGRESSION

$$
\widehat{G}(w)=\frac{1}{m} \sum_{i=1}^{m}\left(y_{i}-w^{\top} x_{i}\right)^{2}+\lambda\|w\|_{1}
$$

Leads to sparsity in the weights!

LINEAR REGRESSION - SUMMARY

Input space: $\mathscr{X} \subseteq \mathbb{R}^{d}$
Output space: $\mathscr{Y}=\mathbb{R}$
Hypothesis Class: $\mathscr{F}:=\left\{x \mapsto w^{\top} x+b \mid w \in \mathbb{R}^{d}, b \in \mathbb{R}\right\}$
Loss function: $\ell(f(x), y)=(f(x)-y)^{2}$
Least Squares solution: $\hat{w}=\left(X^{\top} X\right)^{-1} X^{\top} Y$

Next class: Eric will talk about k-nearest neighbors

