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LOGISTICS - UPCOMING

Homework

*k HWO due on Friday, Jan 20,2023 end of day
sk For those on waitlist, email your HWO to Keshav and Wendi (head TAs)
*k HW I will be out on Monday, Jan 23, 2023

Recitation:

>k Sign up link will be posted on Ed this Friday

%k Math background recitation next week

Instructor OH:

>k Eric and | will run joint office hours after class on Tuesdays 3:30-4:30




OUTLINE - TODAY

%k Quick Review of Perceptron

%k Logistic Regression
= MLE perspective

%k Linear Regression
% Least squares solution
% MLE perspective

%k Regularization



PERCEPTRON - SUMMARY

Input space: 2 C R¢
Output space: ? = {-1,1}

Hypothesis Class: # = {x — Slgn(W x+b)|weR% b eR)
0 ffix)=y

1 otherwise.

Loss function: £(f(x),y) = {

Assumption: Linearly separable data

Guarantee: Zero-error on training data after 1/y iterations for margin y
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PERCEP TRON - FAILURES

XOR:

Minsky a

Led to the Al winter till mid 1980s

nd Papert in a 1969 book “Perceptrons”

showed t

nat

Perceptron faills on XOR problems

Non-linearly separable data: Kemnels (later in class)

Separable in a lifted space

Noise:

Hard classifier; cannot model inherent noise

| 4

| 4

| 4

Non-separable Data



NON-DETERMINISTIC INPUTS

Perceptron assumed deterministic labels

But there may be inherent uncertainty in the label
/\

@ 1(yes) A—== = — — — —— — —= —-

1 (ves)
0 (no) 1\ >
\ 7/
% ~ @< 0 (o) —
threshold - o N
tem pe rature © Machine Learning @ Berksley

@ Machine Learning @ Berkeley

We can model this uncertainty using some function n(x) = P(y = 1| x)
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LOGISTIC FUNCTION

We can model #(x) = P(y = 1| x) using different functions

Step function Sigmoid function
sign (a) - 1 fa Z O, (discrete) (continuous)
Ul 0 otherwise. 1

Step function

sigmold(a) =

1 + exp(—a) |0

Sigmoid function

More unsure near the

_ _ — o ' Ty) =
P(y = 1'|x) = n(x) = sigmoid(w ' x) = I + exp(—wTx) decision boundary

1 Like perceptron away from
— I+ exp(wTx) the decision boundary

Py=—-1|x)=1—-nx) =1 - sigmoid(w ' x)

v



DECISION BOUNDARY

How do we decide the label given the logistic model?

Ply=+1]|x) 1+ exp(w ' x)
Py=—-1]|x) 1+exp(—wTx)

= exp(wa) =1whenw'x=0

wix >0

Linear decision boundary




LOSS FUNCTION

Logistic Loss

_10 ( (X)) ”Cy — 1 | | | | l— Z;ero-oné 0SS
f(f()(f), y) — g f : 5 — Hinge IossI ‘
— lOg( 1 — f(.X)) Other\/\ﬂse — Logistic loss

For our setting logistic loss is log (1 + exp(—y wa))

0/1 Loss
Con(f(x),y) = 1[f(x) # y] = y évTxl |
For linear classifier this Is 1[Sgn(WTx) ?é )’] — l[y WTX < O] Logistic loss is an upper

bound of O/ loss

Why this loss!




PROBABILISTIC VIEW - MAXIMUM LIKELIHOOD ESTIMATOR

Another way to view the supervised learning task Is to maximize the

Ikelihood of seeing the training data

&k Make an explicit modeling condition on the data distribution

*k Find parameters that maximize the probability of seeing the data

Suppose the parameters of the model are denoted by &
9((9) = P(S | 0) S is the training data

- H P(x.,y: | 0) Training data is i.i.d



MAXIMUM (CONDITIONAL) LOG LIKELIHOOD

SUp

DOSE WE C

on't have any assumption on the generation process of x, then

we can maximize a condrtional likelihood

The log-likelihood Is then equivalent to:

T

Z0) = [ | PG | x,0)
=1

2L
|
| /
|

log (6) = log (HP(y,- X 9))

i=1 log is a

Maximize

— Z log (P(yl- | X, 6’))
i=1

N INcreasing function

~s of both are i1dentical



M(C)LE - LOGISTIC REGRESSION

We have the model for P(y | x, w), substituting it gives us

log £(w) = 2 log (P(Yi | X; W))
i=1

< 1
= Z log
— 1 + exp(—y;w'x;)

— ) log (1 +exp(—yw'x))
=1

This Is the negative of the logistic loss!

max log %% (w) = min R(w)



LOGISTIC REGRESSION - TRAINING

Training Dataset: & = {(x;, V), (X, V), ..., (X, V) |,

Empirical Risk Minimization: Find w that minimizes

~ _i 7 B -
R (w) = Mi:zllog(l+exp( y: W xl-))

How do we solve this minimization problem?

he problem Is convex so we can use convex optimization (will discuss In later lectures)

13



LOGISTIC REGRESSION - SUMMARY

Input space: & C R4 Perceptron
Output space: % = [0,1] ¥ ={-1,1}

Hypothesis Class: & := {x — sigmoid(w 'x + b)|w € R%, b € R}

F = {x signw'x+b)|w e R%,b € R)

—log(flx)) ify=1

Loss function: £(f(x),y) = {—log(l _ (%)) otherwise

0 ifflx)=y
1 otherwise.

C(f(x),y) = {

|4



SUPERVISED LEARNING

Predict future outcomes based on past outcomes
Inputs =RV A Labels y € %
iﬁk {3

Dog | (4 = Breeds) Classification

ictures . g ,
o F "Chi hug" Discrete labels
T > W iNnuanua
- | Y
-t = 2 4 ' < A
¥, . " O ' 9|
Bt e A A o |
J‘?.":""": "'dloz; ’.P: ll"{’ " »l 1‘-‘."-; \'& '
ST T4 5] ML L dw e BT
o 2% U4, -7 5 g2
AN 1% |y i e . 6
O~ .8 1'! 3 ALk . 4y 62

(% = Stock prices) Regression
'$130.02"

Continuous labels

Task: Learn predictorf: X — ¥
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HYPOTHESIS CLASS - LINEAR REGRESSORS

Similar to perceptron, can ignore bias

Linear regressors & .= {x — w'x+b W & IRd, be R}

oo NSIDC Index of Arctic Sea lce in September

8.0

70 ‘ ® * ’ L .
6.0 = o "at °.

50 o\
4.0 ~

3.0

2.0
1.0

0.0

1975 1985 1995 2005 2015 2025
Year

Arctic Sea lce Extent
(millions of sq km)
/

Data from https://nsidc.org/arcticseaicenews/sea-ice-tools/



https://nsidc.org/arcticseaicenews/sea-ice-tools/

LOSS FUNCTION

Square Loss

£(f(x),y) = (f(x) — y)*

Square-loss =

Absolute-loss =

di +ds + dj

+d; + dz

S

Absolute Loss
c(f(x),y) = |f(x) — y|

|di |+ |dy| + |dsy| + |dy| + | ds]

HOW C

S

OEsS SC

uare loss behave on outliers!?

|/



LINEAR REGRESSION - TRAINING
Training Dataset: $ = {(x;,V,), (x>, ¥,), ..., (x,, v )}, x. € R%,y. € R

Empirical Risk Minimization: Find w that minimizes

~ 1 <«
R(w)=—) (= wh)’
=1

How do we solve this minimization problem?

he problem is convex, In fact we can get a closed form solution

| 8



LEAST SQUARES

Loss is convex —> differentiate to find minimizer

2 m
. lake derivative — Z (wal. — yl.)xl. — ()
—~ | T 0 and set to O m 1
Rw=—) i-whxy?
m - ’ m m
= -
=1 =1
N,
1 V1 Matrix notation l
— sz — Xd Y2 x1
Let X = . eR™LY=1.1€R” X'Xw=X'Y
_ an/l — Ym Normal Equations for

Least Squares Regression



SOLVING THE SYSTEM

Normal Equations for
Least Squares Regression

f X' X is invertible then

‘;‘\/

Vo N

X'Xw=X'"Y

= X' X)Xy

Y = Xw is the projection of Y onto the subspace spanned by the

columns of X, X, ...X; where X; = [xlj,

VWhat Is the com

!
Recall that X(X ' X)~'X is the projection matrix on to this subspace

butational cost of com

20

T

buting this!

= Rmxd, Y =

Y2

_ym_




LINEAR REGRESSION - REGULARIZATION

What if X ' X is very close to being singular?

This can lead to large values for w which might overfit

o~ o~ ] —
G (W) = R W) +Apw) =— ) (= w
=1

w(w) is chosen to be some function that

benalizes com

X)* + Ap(w)

dlexity of w

Common examples include: y(w) = HWH% ory(w) = ||w||;

2|



RIDGE REGRESSION N D H .

2
lake derivative — E (wal. — yl.)xl. + 2w = 0
P 1 I and set to O m i—1

Gw)=— ) (= wh) + 2wl ———

m m
=1 —> ( Z xl-xl.T + ﬂm]) W = Z VX,
i=1

=1

Matrix notation l
W, = X'X +mD~ XY

Always invertible,
eigenvalues are > Am

X'X+ imhw =X"Y
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LASSO REGRESSION

quadratic program

o~ |
G (W) = — Z (yi B WT)Cl-)z n M‘WHl Can model as a
n =1

Leads to sparsity in the weights!
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LINEAR REGRESSION - SUMMARY

Input space: 2 C R¢
Output space: ? =R

Hypothesis Class: & := {x » w'x+ b|w € R% b € R}
Loss function: f(f(x),y) = (f(x) — y)°
Least Squares solution: w = (X'X)"!X'Y

Next class: Eric will talk about k-nearest neighbors
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