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Towards General-Purpose Robots: Key Problems

• Failures In High-Information Settings



Task Difficulty and Information

Controlled factory 
automation settings

Fully observed and 
well-modeled

Homes, offices, hospitals, small-
scale manufacturing ...

Unknown / stochastic dynamics, partial 
observation, resource constraints …

Information ≈ Unpredictability

Low information High information



Perception Delivers Information

Perception-Action loops must be “more closed”

Action sequence Action

Perception

State Initial State



Towards General-Purpose Robots: Key Problems

• Failures In High-Information Settings

• Acquiring New Skills Specialized to Each Use Case

Vision-Based
ControllersPerception should carry high-throughput, low-latency information.

state information

representation images observation

action
decision-making

Learning?



state information

representation images observation

action
decision-makingtask specification / 

learning signal?

How to get learning signals to flexibly specify new skills for these 
large learned components in the controller?

Perception-Action-Learning Loop



Dense Rewards as Task Specifications

reward

state information

representation images observation

action
decision-making

Expertise-intensive, inaccessible to a lay user
Often relies on true state information

Task-specific robot-experience-intensive
Does not scale to large numbers of skills

Painstaking manual
reward specification



Vision-Based
Controllers

Towards General-Purpose Robots: Key Problems

• Failures In High-Information Settings

• Acquiring New Skills Specialized to Each Use Case

Perception should carry high-throughput, low-latency information.

Versatile human-robot interfaces for task specification / teaching.
Multimodal Goals For 

Robot Learners



Goal Specifications for Vision-Based Robot Learning

Goal-reaching
sparse reward

state information

representation images observation

action
decision-making

Image goal

Language goal
“Clean table”

Interactive 
“unit test” goal

Fu, Justin, et al. "Variational inverse control with events: A general framework for data-driven reward definition." NeurIPS (2018).
Singh, Avi, et al. "End-to-end robotic reinforcement learning without reward engineering." RSS (2019).
Eysenbach, Ben, et al. "Replacing rewards with examples: Example-based policy search via recursive classification." NeurIPS(2021).



Talk Outline

• Language and Image-Based Goal Specifications
§ Ma et al, VIP: Towards Universal Visual Reward and Representation via Value-Implicit 

Pre-Training. ICLR 2023
§ Ma et al, Language-Image Representations and Rewards for Robotic Control (under 

review)

• Physical Objects as Goal Specifications
§ Huang et al, Training Robots to Evaluate Robots: Example-Based Interactive Reward 

Functions for Policy Learning. CORL 2022

• Exploration to Discover Goal-Based Skills
§ Hu et al. Planning Goals for Exploration. ICLR 2023

https://www.seas.upenn.edu/~dineshj/publication/ma-2023-vip/
https://www.seas.upenn.edu/~dineshj/publication/ma-2023-vip/
https://www.seas.upenn.edu/~dineshj/publication/ma-2023-vip/
https://www.seas.upenn.edu/~dineshj/publication/huang-2022-lirf/
https://www.seas.upenn.edu/~dineshj/publication/huang-2022-lirf/
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Interactively Perceiving Task Rewards For 
Training RL Agents

Kun Huang, Edward Hu, and Dinesh Jayaraman, 
“Training Robots to Evaluate Robots: Interactive Reward Functions for Task Policy Learning”

CORL 2022 (Best Paper Award)



Goal Snapshots Might Not Fully Specify A Task

Image Positives

State

Perception

Reward

Action

Perception

Estimated

Fu, Justin, et al. "Variational inverse control with events: A general framework for data-driven reward definition." Advances in neural 
information processing systems 31 (2018).
Singh, Avi, et al. "End-to-end robotic reinforcement learning without reward engineering." Robotics: Science and Systems (2019).
Eysenbach, Ben, et al. "Replacing rewards with examples: Example-based policy search via recursive classification." Advances in Neural 
Information Processing Systems 34 (2021).

Task 
Policy

Is this reliable?



Perceiving Task Rewards is Often Hard!

Door
Unlocked? Locked?

Unlocked

Locked

Open

Open
Bottle cap

Loose? Tight?

Loose

Tight

Flip

Flip

Specifying such verification behaviors would 
constitute a more complete goal specification

Akin to a kind of interactive unit test for software development 



Verification Behaviors As Task Specifications
Task: Close & Lock Door

Unlocked Locked

Could we automatically acquire “interactive reward 
function” policies to specify the task to a skill learner?

Reward: Reward:

But where do verification behaviors come from?



Solution: Image Snapshots Actionable Examples

Image Positives Actionable Positives Disambiguating actions

Provided by the user We will learn these with 
RL!



RL Training Loop with Actionable Positives

State

Perception

Action

Reward
Estimated

Task 
Policy

Interactive Perception
with IRF Policy

Actionable Positives



IRF 
Policy

Learning from Interactive Reward Functions (LIRF) Framework

IRF 
Policy

Initial 
Task 

Policy

IRF Policy Training

State

Perception

Action
IRF 

Reward

IRF 
Policy

LIRF Task 
Policy

Positive
Actionable 
Examples

Negative
Actionable 
Examples

𝑜! 𝑜!
𝐷 𝐷

Bonus: IRF policy can even run at test time, as an in-the-loop verification behavior!
“Run the task policy until the IRF evaluation looks good.” 



Experiments: Qualitative Results

Door Locking Block Stacking Screwing

Block colors for visualization only.
Green = heaviest block.



Task Policy Success Rates
Door Locking Block Stacking Screwing

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

VICE [1]

LIRF (Ours)

LIRF+Verify (Ours)

GAIfO [2]

Manual IRF

GT State Reward

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

[1] Fu, Justin, et al. "Variational inverse control with events: A general framework for data-driven reward definition." Advances in neural information 
processing systems 31 (2018).
[2] Torabi, Faraz, Garrett Warnell, and Peter Stone. "Generative adversarial imitation from observation." arXiv preprint arXiv:1807.06158 (2018).



IRF Policy Rollouts

On a positive 
example

On a negative 
example

Huang, Hu, Jayaraman, Conference On Robot Learning 2022. (Best Paper)



•Red ball appears: LIRF policy execution; Green ball appears: IRF policy execution

Huang, Hu, Jayaraman, Conference On Robot Learning 2022. (Best Paper)



Takeaway

Physical objects can be used as “actionable examples” of desirable goal states
↓

learning interactive “unit test” functions to specify skills
↓

learning actual skill policies
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Vision-Language Representations 
For Robot Learning

With Jason Ma, Osbert Bastani (UPenn), Shagun Sodhani, Vikash Kumar (FAIR), Amy Zhang (FAIR & UT Austin)

VIP: Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training, ICLR 2023

Language-Image Representations and Rewards for Robotic Control . (under review)

https://www.seas.upenn.edu/~dineshj/publication/ma-2023-vip/
https://www.seas.upenn.edu/~dineshj/publication/ma-2023-vip/


A Robot’s “Control Loop”

?
representation observation

decision-making

How should the robot represent the information in its visual observations?



What is a Good Visual Representation?

𝝓(⋅) 𝝓(𝐱)Image 𝐱

Good representations organize information conveniently for the task.

“dog”

for Recognition?



Aside: An Intro to Visual Representation Learning
Autoencoders

Variations of this include: Variational Autoencoders



Aside: An Intro to Visual Representation Learning
Masked Autoencoders



Aside: An Intro to Visual Representation Learning
Contrastive Learning

But what is to stop the representation from collapsing to 𝒛 𝒙 = 𝟎 ∀𝒙?
Contrastive Learning



Aside: An Intro to Visual Representation Learning
Contrastive Learning

This can be shown to approximate a lower bound on MI between the two views



∥ 𝑀!𝐳(𝐱") − 𝐳(𝑔𝐱") ∥𝟐

Egomotion-Equivariant Contrastive Representations

𝐱)

𝑔𝐱!

𝐳(𝐱#)

𝐳(𝑔𝐱#)

𝑀*

Desired: for all motions 𝑔 and all images 𝐱,Given:

𝐳(𝑔𝐱!)

𝐳(𝐱!) 𝑀$
Feature space:

𝑔

Jayaraman and Grauman, ICCV15 & IJCV Special Issue of Best Papers from ICCV15

𝐳

𝐳

=?

𝐳 𝑔𝐱 ≈ 𝑀*𝐳(𝐱)



What is a Good Visual Representation?

𝝓(⋅) 𝝓(𝐱)Image 𝐱

Good representations organize information conveniently for the task.

“dog”

for Recognition?

Self-supervised representations: contrastive learning, masked autoencoding etc. 
Great results for recognition. Recently shown to also transfer to robots 
sometimes, but …

Could we construct representations specialized for control?





What is a Good Visual Representation for Robotics?

Learning Objective: What does it mean to organize the visual information to 
present to a controller / policy?

Data: What datasets could we train on, that might be useful for robotic 
manipulation?

𝝓(⋅) 𝝓(𝐨)Image 𝐨 𝝅(⋅)

“rotate 
gripper +4°”

𝒂 = 𝝅(𝝓(𝒐))



Overview: The Reinforcement Learning Formalism

States 

Actions

Transition function

Task Reward function

Action

Agent’s objective: maximize the discounted sum of “reward” over time by 
executing a good action sequence 𝑎+, 𝑎,, … ,

max
%

𝑅 𝜋 = 𝔼 .
&'(

)

𝛾&𝑟 𝑠&, 𝑎&, 𝑠&*+

State 𝑠$

Agent Environmentunknown

𝑠 ∈ 𝑆

𝑎 ∈ 𝐴

𝑃(𝑠-|𝑠, 𝑎)

𝑟(𝑠, 𝑎, 𝑠′)



Universal Value Functions

• Optimal Value Function of A State

𝑉∗ 𝑠/ = 𝔼 ;
012

3

𝛾0𝑟 𝑠0 , 𝑎0 , 𝑠04+

“How good is this state for completing the task 𝑔 (if acting optimally)”?

• Value functions are a useful abstraction towards policy learning:
§ Bellman equations and TD-learning
§ Don’t require known actions
§ Can guide policy improvement (trajectory opt, RL, …)

𝑉∗ 𝑠2; 𝑔 = 𝔼 ;
012

3

𝛾0𝑟 𝑠0 , 𝑎0 , 𝑠04+; 𝑔

conditioned on a task g [Schaul et al 2015]



Representations as Value Functions

𝝓(⋅) 𝝓(𝐨) 𝝅(⋅)

“rotate 
gripper +4°”

𝒂 = 𝝅(𝝓(𝒐))Image 𝐨



Representations as Value Functions

𝑽∗(⋅ ; 𝒈)

0.8

𝑽∗(𝒐; 𝒈)𝝓(⋅) 𝝓(𝐨)Image 𝐨

“squeeze 
the brush 

dry”
or

task specification 𝑔



Representations as Value Functions

𝑽∗(⋅ ; 𝒈) 𝑽∗(𝒐; 𝒈)

𝝓(⋅) 𝝓(𝐨)Image 𝐨

Image 𝐠 𝝓(𝐠) 0.8distance

VIP, ICLR ‘23

Representation 𝝓(⋅) should be rich enough so that it easily expresses 𝑉∗



Representations as Value Functions

𝑽∗(⋅ ; 𝒈) 𝑽∗(𝒐; 𝒈)

𝝓(⋅) 𝝓(𝐨)Image 𝐨

𝝓𝒍(𝐠) 0.8distance

“squeeze 
the brush 

dry”

Language 𝐠 𝝓𝒍(⋅)

Core Idea: 
Train 𝝓 ⋅ ,𝝓𝒍 ⋅ to minimize 
TD error in 𝑽∗(𝝓 ⋅ , 𝝓𝒍 ⋅ )*

LIV (under review)



Data To Train a Universal Value Function

In-domain, task-specific robot demonstration data are inherently scarce 
and expensive to collect.

Not enough robot data for pre-training and generalization

V*(                ,                )
GoalObservation

V*(                ,                )

Data: What datasets to train on?



Pre-Train on In-the-Wild Human Videos
Human videos are abundant, and cover many diverse tasks!

• Advantage of goal-reaching rewards: every video reaches 
some goal! Just treat the final frame* of any video as the goal

• Reward function? r = 1 for last step of video, 𝜖 < 1 elsewhere.
• Actions not available, but no problem: we only care for 𝑉∗(𝒔)



Training Objective

one-step TD error on 𝑉∗ ⋅ ; 𝑔 = ||𝜙 ⋅ − 𝜙 𝑔 ||-
Pulls every frame o 

preceding g to have high 
𝑉∗ 𝑜 ; 𝑔

Encoder 𝜙(⋅)

Attract

Anchor Positives “Negatives”
1VIP Embedding

“put down 
glass”

AttractEgo4D dataset 
(Grauman 2022)

EpicKitchens
(Damen 2021) 



Results: Language-Goal Value Function 𝑑(𝝓 𝒐 ,𝝓𝒍 𝒈 )



Results: Image-Goal Value Function 𝑑(𝝓 𝒐 ,𝝓 𝒈 )

On demo data, our representations predict smooth goal-conditioned V* 
on human and robot videos.



What Can We Do With 𝝓(⋅) and 𝝓𝒍(⋅)?
• Use as representations for robot learning:

§ Training robot policies on image representation with: 
§ behavior cloning
§ language-conditioned behavior cloning [Lynch ’20]

• Use as dense reward functions to guide reinforcement policy learning:
§ 𝑅 𝑜, 𝑎, 𝑜-; 𝑔 = 𝑉∗ 𝑜′, 𝑔 − 𝑉∗ 𝑜, 𝑔 = ||𝜙 𝑜- − 𝜙 𝑔 ||, − ||𝜙 𝑜 − 𝜙 𝑔 ||,

§ offline RL (reward-weighted regression [Peters ’07]) for policy learning from 
noisy demos

§ online policy improvement with trajectory optimization and RL (natural 
policy gradient [Kakade ’01]) 



Quantitative Results Summary
Results: Real-World BC / Offline RL From 20 Demos

Results: Language-Conditioned Behavior Cloning



Results: Language-Conditioned Behavior Cloning

Pretraining-only 
performance

Performance 
improvement 
from in-domain 
finetuning



Results: Offline RL Examples
Close Drawer (100%) Pick and Place Melon (100%)

Push Bottle (90%) Fold Towel (90%)



Results: Image Goal-Conditioned Trajectory Opt. & Online RL
Evaluating both representation + reward



Results: Image Goal Trajectory Opt Examples



Takeaway

Representations as goal-conditioned “universal value functions” offer a 
powerful new way to learn control-aware vision, language, (and other?) 

representations.



Object-Structured Visual Representations

Jianing Qian, Anastasios Panagopoulos, and Dinesh Jayaraman, ECCV 2022

H3.6M UPenn B&O

E.g. Unsupervised, hierarchically structured entity-centric representations. 
“Keypoint Pyramids” (ECCV 2022)



Goals In Other Modalities: Tactile Servoing

Tian*, Ebert*, Jayaraman et al, ICRA 2019





Takeaways

• Control-specific multimodal representations can be trained as value 
functions from large-scale offline data
• Physical objects can be used to specify task goals by training interactive 

reward function policies.
• Goal-directed exploration through learned models can discover skills.

• Future work:
§ Shared representations, encoding objects etc., to improve the task 

specification interface.
§ Logical task specifications, safety constraints ...
§ Learners that can flexibly recognizing and exploit many different types of 

learning signals on-the-fly.
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