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owards General-Purpose Robots: Key Problems

* Failures In High-Information Settings



Task Difficulty and Information
Information = Unpredictability
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~Low information 3 .. # High information

Controlled factory Homes, offices, hospitals, small-
automation settings scale manufacturing ...
Fully observed and Unknown / stochastic dynamics, parti

well-modeled observation, resource constraints ...



Perception Delivers Information

Action sequence Action
at+1

Initial State
So

Perception-Action loops must be “more closed”




owards General-Purpose Robots: Key Problems

* Failures In High-Information Settings Vision-Based
Perception should carry high-throughput, low-latency information. Controllers
* Acquiring New Skills Specialized to Each Use Case Learning?

decision-making

I—> action
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representation | images : I observation




Perception-Action-Learning Loop

task specification / decision-making

. . action
learning signal 1
R (= |
il

state information

representation | images : I observation

How to get learning signals to flexibly specify new skills for these
large learned components in the controller?



Dense Rewards as Task Specifications

Painstaking manual decision-making S ction
reward specification reward , 2 1
total_rew = 0 !q!
if stage == 1: -]

total_rew += door_close_rew

l
elif stage — 2: state information

total_rew += insert_key_rew

elif stage == 3:
total_rew += turn_key_rew

else:

total_rew += turn_key_back_rew 1 . 1
representation | images < I observation

Expertise-intensive, inaccessible to a lay user
Often relies on true state information
Task-specific robot-experience-intensive
Does not scale to large numbers of skills



owards General-Purpose Robots: Key Problems

Vision-Based
Perception should carry high-throughput, low-latency information. Controllers

* Acquiring New Skills Specialized to Each Use Case Multimodal Goals For

Versatile human-robot interfaces for task specification / teaching. Robot Learners




Goal Specifications for Vision-Based Robot Learning

Image goal

Goal-reaching decision-making

sparse reward action 1
\
Language goal ; s

1
“Clean table” state information
Interactive representation T— Images

“unit test” goal

/
a

observation

Fu, Justin, et al. "Variational inverse control with events: A general framework for data-driven reward definition." NeurIPS (2018).
Singh, Avi, et al. "End-to-end robotic reinforcement learning without reward engineering." RSS (2019).
Eysenbach, Ben, et al. "Replacing rewards with examples: Example-based policy search via recursive classification." NeurIPS(2021).
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* Language and Image-Based Goal Specifications

= Ma et al, VIP: Towards Universal Visual Reward and Representation via Value-Implicit
Pre-Training. ICLR 2023

" Ma et al, Language-Image Representations and Rewards for Robotic Control (under
review)

* Physical Objects as Goal Specifications

" Huang et al, Training Robots to Evaluate Robots: Example-Based Interactive Reward
Functions for Policy Learning. CORL 2022
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Interactively Perceiving Task Rewards For
Training RL Agents

Kun Huang, Edward Hu, and Dinesh Jayaraman,
“Training Robots to Evaluate Robots: Interactive Reward Functions for Task Policy Learning”
CORL 2022 (Best Paper Award)




Goal Snapshots Might Not Fully Specify A Task

¥, I Acti
- Estimated Sl
Image Positives

Reward

©

Perception

Fu, Justin, et al. "Variational inverse control with events: A general framework for data-driven reward definition." Advances in neural
information processing systems 31 (2018).

Singh, Avi, et al. "End-to-end robotic reinforcement learning without reward engineering." Robotics: Science and Systems (2019).
Eysenbach, Ben, et al. "Replacing rewards with examples: Example-based policy search via recursive classification." Advances in Neural
Information Processing Systems 34 (2021).



Perceiving Task Rewards is Often Hard!

Door
? Locked?

Bottle cap
! Tight?

Tight
Locked

Specifying such verification behaviors would
constitute a more complete goal specification

Akin to a kind of interactive unit test for software development



Verification Behaviors As Task Specifications
Task: Close & Lock Door

Reward: l’ Reward: lb

Unlocked

Locked

But where do verification behaviors come from?

Could we automatically acquire “interactive reward
function” policies to specify the task to a skill learner?




Solution: Image-Snrapshots Actionable Examples

Image Positives ‘ Actionable Positives Disambiguating actions

Provided by the user We will learn these with

'Jlj RL!



RL Training Loop with Actionable Positives
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Learning from Interactive Reward Functions (LIRF) Framework
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Bonus: IRF policy can even run at test time, as an in-the-loop verification behavior!

“Run the task policy until the IRF evaluation looks good.”




Experiments: Qualitative Results

Door Locking Block Stacking Screwing

Block colors for visualization only.
Green = heaviest block.



Task Policy Success Rates

Door Locking Block Stacking Screwing
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[1] Fu, Justin, et al. "Variational inverse control with events: A general framework for data-driven reward definition." Advances in neural information
processing systems 31 (2018).
[2] Torabi, Faraz, Garrett Warnell, and Peter Stone. "Generative adversarial imitation from observation." arXiv preprint arXiv:1807.06158 (2018).



IRF Policy Rollouts

On a positive
example

On a negative
example

Huang, Hu, Jayaraman, Conference On Robot Learning 2022. (Best Paper)



*Red ball appears: LIRF policy execution; : IRF policy execution

Huang, Hu, Jayaraman, Conference On Robot Learning 2022. (Best Paper)



akeaway

Physical objects can be used as “actionable examples” of desirable goal states

)

learning interactive “unit test” functions to specify skills

)

learning actual skill policies
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* Language and Image-Based Goal Specifications

= Ma et al, VIP: Towards Universal Visual Reward and Representation via Value-Implicit
Pre-Training. ICLR 2023

" Ma et al, Language-Image Representations and Rewards for Robotic Control (under
review)
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Vision-Language Representations
For Robot Learning

With Jason Ma, Osbert Bastani (UPenn), Shagun Sodhani, Vikash Kumar (FAIR), Amy Zhang (FAIR & UT Austin)

VIP: Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training, ICLR 2023

Language-Image Representations and Rewards for Robotic Control . (under review)
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How should the robot represent the information in its visual observations?



What is a Good Visual Representation for Recognition?

() b (x)
§:>‘ “dog”

Good representations organize information conveniently for the task.




Aside: An Intro to Visual Representation Learning
Autoencoders

AutoEncoder
Latent
representation
""" : Reconstructi
Input . / CCCCCCCCCCC
‘ Encoder | | 1+  Decoder . ‘
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LAP(x;0,6) = [x — po(gs(x)]”

Recons truction cos t

Slide from Alex Graves

Variations of this include: Variational Autoencoders



Aside: An Intro to Visual Representation Learning
Masked Autoencoders
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Aside: An Intro to Visual Representation Learning
Contrastive Learning

Joint Embeddin ng Architecture

ode_
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But what is to stop the representation from collapsing to z(x) = 0 Vx?

Contrastive Learning




Aside: An Intro to Visual Representation Learning
Contrastive Learning

Contrastive Learning

Joint Embedd?r\g Archtecture

Take a datapoint (an image), and try to fit a scoring function to make sure it aligns

Encoder . . ' :
more with a positive relative to a negative.

Augwxen‘t (Resnet)

features

SCOTEe\T, T -~ SCOTE\Z. X
Augme_n‘ted : ( ) pos ) ( ) neg )
views )
Encod 8(Z, ZTpos)
S LintonceE = —E |log
nt

Iwmo
ge (Resnet) $(x, Tpos) + Z!l;#—."p..;. s(x,y;)

Aucm
it features

Slide adapted from Aaron van den oord

This can be shown to approximate a lower bound on Ml between the two views

1. Representation Learning with Contrastive Predictive Coding (van den Oord et al 2018)
2. Improved Deep Metric Learning with Multi-Class N-Pairs Loss - (Sohn et al 2016)
3. Deep InfoMax, AMDIM (Hjelm, Bachman, et al 2019)




Egomotion-Equivariant Contrastive Representations

Given: Desired: for all motions g and all images X,
z(gx) = M,z(X)

-1 0 T

gxi—~ W[ =]] =0 —
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Feature space::
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Jayaraman and Grauman, ICCV15 & IJCV Special Issue of Best Papers from ICCV15



What is a Good Visual Representation for Recognition?

¢C¢) Px)

’)

l(dog

Good representations organize information conveniently for the task.

Self-supervised representations: contrastive learning, masked autoencoding etc.
Great results for recognition. Recently shown to also transfer to robots
sometimes, but ...

Could we construct representations specialized for control?






What is a Good Visual Representation for Robotics?
Image o () $(0) n(-) a=mn(¢(0))

LN 4

X “rotate
gripper +4°”

\
HEEEEEEEEEEEEE

Learning Objective: What does it mean to organize the visual information to
present to a controller / policy?

Data: What datasets could we train on, that might be useful for robotic
manipulation?



Overview: The Reinforcement Learning Formalism

States SES Action
a¢
Actions a €A ﬂ
o, o R / ’ \
Transition function P(s'|s,a) n U
] vy ‘v S
Task Reward function r(s,a,s’) I ! tate s,
& A

_un

Agent Environment

Agent’s objective: maximize the discounted sum of “reward” over time by
executing a good action sequence a4, as, ...,

oo

max R(m) = [E[ yir(se, ag Ser1)
T
t=0



Universal Value Functions

» Optimal Value Function of A State conditioned on a task g ischaul etal 2015]

0.0)

V*(sg;9) = E z v r(se ar, Ses1; 9)
Lt=0 i
“How good is this state for completing the task g (if acting optimally)”?

 Value functions are a useful abstraction towards policy learning:
= Bellman equations and TD-learning
" Don’t require known actions
= Can guide policy improvement (trajectory opt, RL, ...)



Representations as Value Functions

Image o ¢() ¢(o)

“rotate
Mper +4°”

:



Representations as Value Functions

Image o ¢d() ¢

~
C
—/

V'i;g9) V(o 9)

i
1

task specification g

0.8

“squeeze
the brush
dry”

or




Representations as Value Functions

Image o P(-) ¢£O) VIP, ICLR ‘23
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Representation ¢p(-) should be rich enough so that it easily expresses V*



Representations as Value Functions

Image 0

Language g

“squeeze
the brush
dry”
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¢' ()

¢

¢

(0)

‘(8

LIV (under review)

\V*C ;9)  V(o;9)

distance 0.8

/ Core ldea:

Train ¢ (), ¢'(-) to minimize
TD error in V*(¢(-), p'(-))*




Data To Train a Universal Value Function

Data: What datasets to train on?

Observation Goal

)

ﬂ In-domain, task-specific robot demonstration data are inherently scarce

and expensive to collect.

Not enough robot data for pre-training and generalization



Pre-Train on In-the-Wild Human Videos

Human videos are abundant, and cover many diverse tasks!

// 4./ .
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* Advantage of goal-reaching rewards: every video reaches
some goall Just treat the final frame* of any video as the goal

 Reward function? r = 1 for last step of video, € < 1 elsewhere.

* Actions not available, but no problem: we only care for V*(s)
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Results: Language-Goal Value Function d(¢(0), qbl(g))

Embedding Distance
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Normalized Distance

Results: Image-Goal Value Function d(¢(0), p(g))
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On demo data, our representations predict smooth goal-conditioned V*
on human and robot videos.




What Can We Do With ¢(+) and ¢'(+)?

* Use as representations for robot learning:
" Training robot policies on image representation with:
= behavior cloning
" language-conditioned behavior cloning (ynch20]

e Use as dense reward functions to guide reinforcement policy learning:

"R(0,a,0";9) =V*(0',9) —V*(0,9) = ||¢p(0") — d(g)|l2 — l|¢(0) — dp(g)]l-

= offline RL (reward-weighted regression rreters071) for policy learning from
noisy demos

= online policy improvement with trajectory optimization and RL (natural
policy gradient [kakade 01])



Quantitative Results Summary

Results: Real-World BC / Offline RL From 20 Demos

Pre-Trained In-Domain
Environment VIP-RWR VIP-BC R3M-RWR R3M-BC | Scratch-BC VIP-RWR  VIP-BC
CloseDrawer 100 £ o 50 + s0 80 + 40 10 + 30 30 + 46 O0xo 0*+o
PushBottle 90 + 30 50 + 50 70 + 46 50 + 50 40+ 48 0*+o 0*+o
PlaceMelon 60 + 48 10 £ 30 O0+o 0+o 0+o 0*+o 0*+to
FoldTowel 90 + 30 20 + 40 0O+to 0+o 0+o 0* +o 0*+o

Results: Language-Conditioned Behavior Cloning

Success Rate

LIV CLIP
FrankaKitchen

LIV CLIP R3M VIP
MetaWorld

R3M  VIP

1. Open Microwave N ‘
2. Open Left Door || ‘.
3. Slide Cabinet #

4. Switch on Light
5. Turn on Stove



Results: Language-Conditioned Behavior Cloning

Success Rate
—_— — N N w
(¥, o (9] o (] o

35 -
Pretraining-only |
performance :
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LIV CLP R3M VIP LIV CLIP R3M VIP
MetaWorld FrankaKitchen
Performance £
improvement Z
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finetuning E
&

LIV CLIP  VIP-I LIV CLIP VIP-I
MetaWorld FrankaKitchen



Results: Offline RL Examples

Close Drawer (100%) : Pick and Place Melon (}100%) b

A

L
- )Y




Results: Image Goal-Conditioned Trajectory Opt. & Online RL

Evaluating both representation + reward

Trajectory Optimization Online RL
0.3 1 0.4 1
0.3
202
% 0.2 A
m .
0.1 0.1 A1
o0 0.0 1
0 10 20 30 40 50 0 100000 200000 300000 400000 500000
0.125 A
0.15
0.100 A
'E 0.10 A | 0.075 A1
L 0.050 -
+ 0.05
0.025 -
0.00 - - 0.000 A
0 20 40 60 80 100 0.0 0.2 0.4 0.6 0.8 1.0
MPPI Steps == VIP == ResNet === MoCo Env Steps 10

Figure 4: Visual trajectory optimization and online RL aggregate results (cumulative success rate %).



Results: Image Goal Trajectory Opt Examples

Microwave-Close Goal Image (center view) VIP R3M

VIP R3M



akeaway

Representations as goal-conditioned “universal value functions” offer a
powerful new way to learn control-aware vision, language, (and other?)
representations.



Object-Structured Visual Representations

E.g. Unsupervised, hierarchically structured entity-centric representations.

“Keypoint Pyramids” (ECCV 2022)
H3.6M UPenn B&O

‘(ko.'_ ‘

¢ ! ¢ »
“Keypoint A

Pyramids(L @

~ Keypoint
Pyramids(L1)

Jianing Qian, Anastasios Panagopoulos, and Dinesh Jayaraman, ECCV 2022



Goals In Other Modalities: Tactile Servoing

Actual rollout

Goal Image

Tian*, Ebert*, Jayaraman et al, ICRA 2019






akeaways

e Control-specific multimodal representations can be trained as value
functions from large-scale offline data

* Physical objects can be used to specify task goals by training interactive
reward function policies.

* Goal-directed exploration through learned models can discover skills.

 Future work:

= Shared representations, encoding objects etc., to improve the task
specification interface.

" Logical task specifications, safety constraints ...

= Learners that can flexibly recognizing and exploit many different types of
learning signals on-the-fly.
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