
NLP & Transformers

Cyril Zhang
Microsoft Research NYC

“Abstract cubist art representing the Transformer multi-head inner product query-key-value self-
attention neural network architecture”, according to a vision-language model (DALL-E 2)

ML, NLP, and “AGI”
• This course: foundations of algorithmic prediction
• One weird prediction problem: !Pr! next word | previous words

• Statistical LM
• Parsing
• Transduction
• Knowledge retrieval
• Symbolic reasoning

• 2020-present: all these capabilities within one system

Python code that finds the n2-th prime: ______

In “AI can write”, the verb phrase is: ______

I know you are, but what am ______

Shakespeare’s 99th sonnet begins with: ______

English: “pigeons can’t swim”. French: ______

“Sparks of AGI”
• GPT-4 demonstrates capabilities in every domain, many at a superhuman level

OpenAI, ‘23. GPT-4 Technical Report.
Bubeck et al., ’23. Sparks of Artificial General Intelligence: Early experiments with GPT-4.

Draw a unicorn in LaTeX.

Write a 3D game...

Write a poem proving the
infinitude of primes.

Conventional… …and unconventional intelligence tests

Agenda
• What’s going on? How did we get here?

• Basics: generalization + optimization, not magic!
• Models: a case study in architecture design
• Capabilities: parsing, generation, transfer, in-context learning
• Scaling: datasets, systems

• Research: mysteries & emergent phenomena
• Theory: computational models within LMs
• Empirical science: explaining, interpreting, & isolating behaviors
• Innovation: what’s next?

• Freeform discussion

Statistical language modeling
• Task: estimate !Pr! 𝑤", … , 𝑤# from examples (sequences of natural language)
• Autoregressive model: an LM of the form !Pr 𝑤$%" | 𝑤", … , 𝑤$

!Pr 𝑤", 𝑤&, 𝑤' = !Pr 𝑤" ⋅ !Pr 𝑤&|𝑤" ⋅ !Pr 𝑤'|𝑤&, 𝑤"

• Self-supervised learning problem: fit 𝜃 to (context, next word) pairs

• Which loss? Multiclass logistic loss (a.k.a. cross entropy)

min
!

𝔼
(!:#,(#$!

ℓ 𝑤$%", 𝑓 𝑤":$; 𝜃

GPT-4📚SGD

Once upon a → 𝑓 →

,Pr | 𝑤!:#time

,Pr | 𝑤!:#cat
,Pr | 𝑤!:#dog

,Pr | 𝑤!:#the

… ℓ$% 𝑦,,Pr ⋅ ≔ −log ,Pr 𝑦
penalize “surprisal"

What’s a good 𝑓 for text? Attempt 1
• 𝑛-gram models (1948+): directly estimate !Pr 𝑤$|𝑤$9:, … , 𝑤$9" by counting

• Smoothing: !Pr 𝑤; | 𝑤":< = 𝜆<!Pr(;) 𝑤; | 𝑤":< +⋯+ 𝜆&!Pr & 𝑤; | 𝑤< + 𝜆"!Pr(") 𝑤;
• Can these models have “AGI-like” capabilities? Intuitively, no…

Challenge: long-range dependencies
• vocab size & parameters
• Needs vocab size & data to generalize
Needs a lot more “parameter sharing”…

I know you are, but what am ______

observed in
training data

observed less frequently

Python code that finds the n2-th prime: ______

In “AI can write”, the verb phrase is: ______

Shakespeare’s 99th sonnet begins with: ______

English: “pigeons can’t swim”. French: ______

bias-variance tradeoff:
longer 𝑛 = larger capacity = needs more data

What’s a good 𝑓 for text? Attempt 2
• Neural networks: arithmetic circuits

• Weights: coefficients in these circuits
• Representations: intermediate variables in these circuits

• Neural LM: a circuit which guesses a distribution over the next word:
𝑤", … , 𝑤$ ↦ !Pr 𝑤$%"|𝑤", … , 𝑤$

• Training: SGD on next-word-prediction loss

𝑦! = 𝜎 ∑𝑤"𝑥"

𝑥! ∈ ℝ learned
representation once

upon

a

time

,

token
embedding

!Pr[cat]
!Pr[the]

!Pr[ducks]

⋮

softmax
𝑧! ↦ 𝑒#!/∑𝑒#!

What’s a good 𝑓 for text? Attempt 2
• Recurrent LMs (1990+): architectures which learn dynamics

• Attention: direct paths to long-range dependencies

• “AGI-like”?

ℎ$%" = 𝑓! ℎ$, 𝑢$ once upon a time

,Pr[⋅]
Challenge: non-convexity
Even when fitting 𝑦 = 𝐴&𝑥…
• Local minima
• Vanishing/exploding gradients“memory”

“code”

In “AI can write”, the verb phrase is: ______

RNN information flow
attention: read a vector over a long range

…

Enough to learn grammar & revolutionize NLP…

What’s a good 𝑓 for text? Attempt 3
• Transformer (2017+): an attention-only neural architecture

• What could be improved about RNNs?
• Statistical: do they underfit or overfit?
• Computational: could the fitting procedure be much faster?

• Self-attention: a new component for NN architectures
• RNNs underfit, due to parameter sharing. Let’s keep it that way.
• RNNs contain non-parallelizable computations.
• How? Discard the RNN…

Vaswani et al. ‘17. Attention is all you need.
Pseudocode digestion: Phuong & Hutter ‘22. Formal algorithms for Transformers.
Theoretical digestion: Edelman et al. ‘22. Inductive biases and variable creation in self-attention mechanisms.

• Self-attention head: a “learned soft pointer” into 𝑥":# which depends on 𝑥":# itself

Anatomy of a Transformer

once

upon

a

time

,

token embeddings
𝑥$, … , 𝑥% ∈ ℝ&"#$

query embeddings 𝑞$, … , 𝑞% ∈ ℝ&%&& , 𝑞! = 𝑊'
(𝑥!

key embeddings 𝑘$, … , 𝑘% ∈ ℝ&%&& , 𝑘! = 𝑊)
(𝑥!

value embeddings 𝑣$, … , 𝑣% ∈ ℝ&%&& , 𝑣! = 𝑊*
(𝑥!

alignment scores

𝑧! = 𝑞", 𝑘!

attention weights

𝛼#, … , 𝛼"

softmax
𝛼! = 𝑒#!/∑𝑒#!

value embeddings
mixed by 𝛼

∑𝛼!𝑣! , 𝛼 $ = 1

trainable parameters:
𝑊-,𝑊.,𝑊/ ∈ ℝ0+,-×0.//

𝑊2 ∈ ℝ0.//×0+,-

overall computation:
𝑓3456789: ℝ:×0+,- → ℝ0.//

𝑋 ↦ softmax 𝑥;<𝑊-𝑊.
<𝑋 𝑋𝑊/𝑊2

Intuitive summary:
• output depends on many inputs, with a fixed “budget”
• budget is distributed proportionally to exp(score)
• score: “how aligned is each key with this head’s query?”
• queries & keys are both linear functions of the input
• each head works in a restricted subspace

output embedding
𝑓0123456 𝑥$, … , 𝑥%

mix according to 𝛼$, … , 𝛼%

= 𝑊7
(∑𝛼!𝑣! ∈ ℝ&"#$

Anatomy of a Transformer
• Self-attention head: a module ℝ#×Q:;< → ℝQ:;<, with weights 𝑊R,𝑊S,𝑊T,𝑊U

• Transformer: a cascade of self-attention heads, ℝ#×Q:;< → ℝ#×Q:;<

once

upon

a

time

,

𝐻-head
self-attention layer

upon

a

time

there

was

Remaining details:
• 2-layer MLPs after each
• normalization layers
• residual connections
• position encodings

GPT-3:
• vocab size = 50257 (subwords)
• 𝑑7=> = 12288, 𝑑833 = 128, 𝐻 = 96
• 96 sequential layers
• context length 𝑇 = 2048
• trained on 45TB of Internet text

convolutional
(groups of heads share 𝑊' ,𝑊) ,𝑊* ,𝑊7)

non-recurrent
(different layers, separate 𝑊' ,𝑊) ,𝑊* ,𝑊7)

What can large Transformers do?
• Predict the next word very accurately (2017+)

• Adapt to new distributions & tasks (2018+)

• Understand data & instructions in-context (2020+)

• Not just language processing: vision, protein folding, trajectory planning, …

Once upon a time, there was … Toronto is the capital of Ontario, Canada.

pretrain model
on large dataset

sentiment analysis
question answering
logical entailment

commonsense reasoning

grammar checking
syntactic parsing

coreference resolution
multilingual understanding

finetune on
smaller datasets

// shortest paths on graph G
for(int i=0; i<n; i++) {

for(int j=0; j<n; j++) { ...

...
“You don’t want to miss it.”
This review is positive.

User: Write my lecture.
Bot: Sure! Your talk on
NLP/Transformers: ...

How much training data?
• As much as we can find. The Pile: 800GB open-source dataset

How much computation?
• GPT-3 as a systems puzzle: ~10"" parameters, ~10&' FLOPs, ~10& days

*parallelization schematic for a smaller Transformer

Summary of Transformers 101
• Deep NLP: simple pipelines, complex data

• Principles are as usual in ML: pick a function class where you can fit efficiently
• Transformers: a parallel function class, with well-chosen biases
• Out-of-distribution generalization emerges, beyond what current theory predicts

• Next: a taste of this new science of foundation models

In my younger and more
vulnerable years my father
gave me some advice that
I've been turning over in
my mind ever since.
“Whenever you _______

📚The University of
Pennsylvania, often
abbreviated simply
as Penn or UPenn, is
a private Ivy League research
university in ________

language model
,Pr' 𝑤#(! | 𝑤!..#

trained with local updates
𝜃#(! ← 𝜃# − 𝜂# ⋅ ∇ℓ 𝜃#

Bommasani et al. ‘21. On the Opportunities and Risks of Foundation Models.

What do Transformers compute internally?
• LMs need to contain grammar-parsing algorithms

• RNNs naturally contain iterative algorithms. What do Transformers implement?

Yao et al. ‘21. Self-Attention Networks Can Process Bounded Hierarchical Languages.
Liu et al., ’23. Transformers learn shortcuts to automata.
Zhao et al. ‘23. Do Transformers parse while predicting the masked word?

Floyd-Warshall on numpy distance array A
def all_pairs_shortest_path(A):
for i in range(len(A)):
for j in range(len(A)):
for k in range(len(A)):
A[i,j] = min(A[i,j], A[i,k] + A[k,j])

return A

(([[]()][]))
()[]()[](())
([{}[({})]])

Dyck languages:
correctly nested brackets

(
[
(
((

(
(

[
(
(

[
[
(
(

[
(
(

[
(
(
(
(

[
(
(
(
((

stack-based parser parallel parser

Input: (([[] ()] []))
Depth: 1 2 3 4 3 4 3 2 3 2 1 0

Stack top: (([[[([([((_
self-attention

Empirical science: learning learning algorithms
• This course: understand how to fit linear predictors
• In-context learning: Transformers can meta-learn how to fit linear predictors

Garg et al., ’22. What can Transformers learn in-context? A case study of simple function classes.
Oswald et al. ‘22. Transformers learn in-context by gradient descent.
Dai et al. ‘22. Why can GPT learn in-context? Language models secretly perform gradient descent as meta-optimizers.

train test

deciphering the internal layers:
each layer implements 1 ~GD step

training iterations

ac
cu

ra
cy

grokking

Innovation: what’s the next breakthrough?
• What could be improved about Transformers?
• Statistical: do they underfit or overfit?
• Computational: could the fitting procedure be much faster?

fir
st

ov
er

fit
…

…
th

en
 ge

ne
ra

liz
e

Power et al., ’22. Grokking: generalization beyond overfitting on small algorithmic datasets.
Zhai et al. ‘21. An Attention-Free Transformer.

hundreds of efficient Transformer variants

Chat time

