CIS 5200: MACHINE LEARNING ONLINE LEARNING

Content here draws from material by Nike Haghtalab (UC Berkeley)

1 | April 2023

Surbhi Goel

Spring 2023

OUTLINE - TODAY

* Online Learning
* Setup
* Mistake Bound
* Having Algorithm
* Regret
* Weighted Majority Algorithm

SUPERVISED LEARNING - RECAP

Training dataset $\mathcal{S} = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\}$

- Uses the entire dataset to make prediction on new test example
- Assumption: data is drawn i.i.d. from some unknown distribution ${\mathscr D}$

Relates training data to test data

- Sequence can be deterministic, stochastic, or adaptively adversarial

Receive one data point at a time, predict, receive label and update model

ONLINE LEARNING - EXAMPLES

- Need to make real-time decisions and update the model
- Handle changing distributions

Investment

Recommender Systems

ONLINE LEARNING - SETUP

We will focus on binary classification

- Learner is given an instance $x_r \in \mathcal{X}$ either from the environment or an adversary • Learner makes a prediction $\hat{y}_t \in \{-1,1\}$
- Learner observes actual label $y_t \in \{-1,1\}$
- Learner suffers a loss $\ell(\hat{y}_t, y_t)$ 0-1 loss

Goal: Minimize the total loss that the learner suffers. Not clear if this is possible, learner needs to be able to deduce something about the future from the past!

MISTAKE BOUND - REALIZABILITY

Assumption: Data satisfies $y_t = f(x_t)$ for some $f \in \mathcal{F}$ (no noise)

- We can hope that the learner can learn this f eventually
- Can count the total number of mistakes any learner makes in the worst-case

 $M_{\mathscr{L}}(\mathscr{F}) := \max_{\substack{f \in \mathscr{F} \\ x_1, \dots, x_t}} M_{\mathsf{istake Bound}}$

$$\max_{\substack{\mathcal{F}, T \\ x_T \in \mathcal{X}}} \sum_{t=1}^T \mathbb{1}[f(x_t) \neq \hat{y}_t]$$

Function class \mathcal{F} if online learnable with mistake bound B if $M_{\mathscr{L}}(\mathcal{F}) \leq B < \infty$

CONSISTENT LEARNER

Forget about computational efficiency for now

Algorithm 2: Consistent Initialize $\mathcal{V}_1 = \mathcal{F}$ for t = 1, 2, ... do Receive x_t Choose any $f_t \in \mathcal{V}_t$ Predict $\hat{y}_t = f_t(x_t)$ Receive true label y_t Update $\mathcal{V}_{t+1} = \mathcal{V}_t \setminus \{f_t\}$ end

Each function is an expert, remove the expert that makes an error

CONSISTENT LEARNER

Theorem:

bound

Each mistake, we remove one hypothesis!

In PAC learning, any ERM was good enough for our guarantee. Not in OL!

Let \mathcal{F} be a finite hypothesis class. The Consistent algorithm enjoys the mistake

$M_{\text{Consistent}}(\mathcal{F}) \leq |\mathcal{F}| - 1.$

HALVING

 $\begin{array}{l} \textbf{Algorithm 1: Halving} \\ \textbf{Initialize } \mathcal{V}_1 = \mathcal{F} \\ \textbf{for } t = 1, 2, \dots \textbf{do} \\ \textbf{Receive } x_t \\ \textbf{Predict } \hat{y}_t = \arg\max_{y \in \{-1, 2\}} \\ \textbf{Receive true label } y_t \\ \textbf{Update } \mathcal{V}_{t+1} = \{f \in \mathcal{V}_t : f(x_t) \} \\ \textbf{end} \end{array}$

Predicting based on majority vote among experts (each classifier is an expert)

Predict $\hat{y}_t = \arg \max_{y \in \{-1,1\}} |\{f \in \mathcal{V}_t : f(x_t) = y\}|$ If tie, predict 1

Update $\mathcal{V}_{t+1} = \{f \in \mathcal{V}_t : f(x_t) = y_t\}$ Version space of all functions that are consistent with the inputs so far

Theorem:

This ERM behaves much better!

Let \mathcal{F} be a finite hypothesis class. The Halving algorithm enjoys the mistake bound $M_{\text{Halving}}(\mathcal{F}) \leq \log(|\mathcal{F}|).$

Halving comes from the fact that the version class is halved at each mistake

BEYOND FINITE CLASS

Is VC dimension a good measure here?

There is a notion of Littlestone dimension that captures the complexity

Can get T/2 mistakes in expectation!

EXAMPLE - PERCEPTRON

Same idea as the offline (batch) perceptron

Algorithm 3: Perceptron Initialize $w_1 = 0$ for t = 1, 2, ... do Receive x_t Predict $\hat{y}_t = \operatorname{sign}\left(w_t^\top x_t\right)$ Receive true label y_t if $\hat{y}_t \neq y_t$ then Update $w_{t+1} = w_t + y_t x_t$ else Update $w_{t+1} = w_t$ end

Gets mistake bound $1/\gamma^2$ for margin γ and norm-1 bounded inputs

BEYOND REALIZABILITY

Is it possible to always get small mistake bound?

$$\operatorname{Regret}_{\mathscr{L}}(\mathscr{F},T) = \sum_{t=1}^{T} \ell(\hat{y}_t, y_t) - \min_{f \in \mathscr{F}} \sum_{t=1}^{T} \ell(f(x_t), y_t).$$

Only need to do as well as the best classifier (expert) in hindsight

Example: Regret $_{\mathscr{L}}(\mathscr{F},T) = \sqrt{T}$ or Regret $_{\mathscr{L}}(\mathscr{F},T) = \log T$

Function class \mathscr{F} if **online learnable** for any sequence if $\lim_{T \to \infty} \frac{\operatorname{Regret}_{\mathscr{L}}(\mathscr{F}, T)}{T} = 0.$ $T \rightarrow \infty$

WEIGHTED MAJORITY - GENERALIZATION TO HALVING

How can we use the idea of halving?

Algorithm 4: Weighted Majority

Initialize $w_{1,i} = 1$ for all $i \in [n]$

for t = 1, 2, ... do

Receive x_t

Predict $\hat{y}_t = \operatorname{sign}\left(\sum_{i=1}^n w_{t,i}f_i(x_t)\right)$ Receive true label y_t

Define $E_t = \{i : f_i(x_t) \neq y_t\}$ (set of all incorrect experts) if $i \in E_t$ then Update $w_{t+1,i} = w_{t,i}/2$

else Update $w_{t+1,i} = w_{t,i}$

end

Down-weight the prediction whenever a classifier (expert) is making a mistake

WEIGHTED MAJORITY LEARNER

Theorem:

the best expert, then

Not exactly the regret bound we wanted, but can improve to regret $O\left(\sqrt{T \log |\mathcal{F}|}\right)$

What happens when we add more good/bad experts (classifiers)?

Let \mathcal{F} be a finite hypothesis class. Let M be the total number of mistakes made by the Weighted Majority algorithm, and let M^* be the number of mistakes made by

$M \leq 2.41(M^* + \log|\mathcal{F}|).$

ONLINE VERSUS BATCH LEARNING

Online Learning

- Define function class
- Define loss function
- Have inputs and corresponding labels Have inputs and corresponding labels
- Learning in each round, no difference
 Learn a model first using training data,
 between test and train
 then test
- Data can be adversarial

Batch Learning

- Define function class
- Define loss function

• Data is i.i.d.

MORE CHALLENGING ONLINE SETTINGS

- Limited feedback, only know the outcome of the choice we made
- Our choices change the environment

Next Lecture: Reinforcement Learning!