CIS 5200: MACHINE LEARNING SEMI-SUPERVISED & ACTIVE LEARNING

Surbhi Goel

Content here draws from material by Nina Balcan (CMU), Cynthia Rudin (Duke), and Kilian Weinberger (Cornell)

28 March 2023

Spring 2023

OUTLINE - TODAY

Finish up Boosting Semi-supervised Learning Active Learning Self-supervised Learning

GENERAL BOOSTING SCHEME

Training set $S = \{(x_1, y_1), \dots, (x_m, y_m)\}$ where $y_i \in \{-1, 1\}$

Image source: https://towardsdatascience.com/what-is-boosting-in-machine-learning-2244aa196682

Weak learner \mathcal{A} guarantees error $\leq 1/2 - \gamma$ for any distribution

SAMPLE LABELS

ADABOOST - ADAPTIVE BOOSTING

Question I: How do we choose μ_t ? For all $i \in [m]$,

 $\mu_{1,i} = - m$ $\mu_{t+1,i} = \frac{\mu_{t,i}}{Z_t} \times \exp(-\alpha_t y_i f_t(x_i))$ Normalizing factor

Optimal choice of shrinkage $\alpha_t = \frac{1}{2} \log \frac{1}{2}$

Equal weight initially

Weight increased if incorrect and decreased if correct

$$g\left(\frac{1-\epsilon_t}{\epsilon_t}\right) \text{ where } \epsilon_t = \Pr_{i \sim \mu_t}[f_t(x_i) \neq y]$$

DABOOST - ADAPTIVE BOOSTING AI

Question 2: How do we construct final classifier f using f_1, \ldots, f_T ?

Weighted combination of the weak learners The weight is based on how good the weak learner is

TRAINING ERROR GUARANTEE

Theorem:

Let f be the output of AdaBoost after T steps, then we have $\hat{R}(f) = \frac{1}{m} \sum_{i=1}^{m} 1[f(x_i) \neq y_i] \le \exp\left(-2\gamma^2 T\right).$

Training error goes down exponentially fast with the number of iterations

Weak learner \mathcal{A} guarantees error $\leq 1/2 - \gamma$ for any distribution

GENERALIZATION PERFORMANCE

We reduced bias by creating a more complex classifier What about the variance of the final classifier for increasing T?

Test error improves even after training error is 0!

BIAS/VARIANCE - WHY NOTRADEOFF?

AdaBoost ensures large margin! (By Schapire, Freund, Bartlett & Lee)

- Training error measures only correctness of prediction
- A better notion is confidence, how sure is the learner about the prediction
- In AdaBoost, the final classifier is a weighted vote of the weak learners Margin - how strong is the vote?
- = total weight of correct weak learners total weight of incorrect weak learners High High Low confidence confidence confidence +1Incorrect

	# rour	
	5	100
train error	0.0	0.0
test error	8.4	3.3
% margins ≤ 0.5	7.7	0.0
minimum margin	0.14	0.52
	-	-

All points have margin at least 0.5

nds 1000 0.0 3.1 0.0 0.55

Large margin \implies simpler classifier and better generalization

OPTIMIZATION VIEWPOINT OF BOOSTING

space of linear combinations of weak classifiers

Recall that
$$\hat{R}(f) \leq \prod_{t=1}^{T} Z_t = \frac{1}{m} \sum_{i=1}^{m} \exp(i\theta_i x_i)$$

- Coordinate descent would choose a coordinate and find the corresponding α to maximally decrease the loss
- AdaBoost is essentially doing coordinate descent on this loss

AdaBoost can be viewed as coordinate descent on a loss function over the

 $\exp(-y_i f(x_i))$ where $f(x) = \sum \alpha_t f_t(x)$

PROS AND CONS

Benefits of AdaBoost

- Fast
- Simple
- Only hyper-parameter is T
- Flexible can use any weak learning algorithm
- Do not need to know how good the weak learner is
- Powerful only weak learners needed

Caveats of AdaBoost

- Performance dependent on data and weak learner
- Can overfit if weak learner is too complex
- Can also underfit if weak
 learner is not good
- Not robust to noise

OUTLINE - TODAY

* Finish up Boosting

- * Semi-supervised Learning
- * Active Learning
- * Self-supervised Learning

SUPERVISED LEARNING - DATA

Training dataset $\mathcal{S} = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\}$

Breed : PUG

How do we actually get Inhala?

Domain experts

Crowdsource

CHALLENGE - LARGE AMOUNTS OF DATA

Massive amount of data but limited supply of domain experts

Image source: https://www.visualcapitalist.com/big-data-keeps-getting-bigger/

- Images
- Text on websites
- Videos
- Protein sequences
- DNA

. . . .

|4

MODERN ML - REDUCE RELIANCE ON LABELS

Can we train machine learning models with less human supervision?

No labelled data

Unsupervised Learning

Clustering (K-means) Density Estimation (GMM) Dimensionality Reduction (PCA)

> Can identify structures or patterns in data

> > Self-supervised Learning

Fully labelled data

Supervised Learning

Regression (Linear Regression) Classification (SVM, Perceptron, Logistics Regression)

> Can learn mapping from input to label

Semi-supervised Learning

Active Learning

SEMI-SUPERVISED LEARNING

Labelled training dataset $S_{l} = \{(x_{1}, y_{1}), (x_{2}, y_{2}), ..., (x_{m_{l}}, y_{m_{l}})\}$

Unlabelled training dataset $S_u = \{x'_1, \dots, x'_{m_u}\}$

 $m_l < < m_\mu$

Prediction function \hat{f}

Machine Learning Method

SEMI-SUPERVISED LEARNING - WHY?

We have access to a lot of unlabelled data, but why is it helpful?

- We can learn some structure of the data using the unlabelled points
- It can be helpful if we some knowledge of how the labels are related to the data distribution

Points in the same cluster are labelled similarly

SELF-TRAINING

Assumption: One's own predictions are good

- Train f using the labelled training set S_1
- Predict pseudo-label $y'_i = f(x'_i)$ for unlabelled examples $i \in [m_n]$
- Add a subset of the pseudo-labelled training set to the labelled training set
- Repeat

Alternative I: Add only the most confident points Alternative 2: Add points weighted by the confidence

SEMI-SUPERVISED SVM - MARGIN

Assumption: The classifier has large margin

SVM with only labelled data

Joachims'99

Transductive SVM

SEMI-SUPERVISED SVM - MARGIN

Labelled training dataset $S_{l} = \{ (x_{1}, y_{1}), (x_{2}, y_{2}), ..., (x_{m_{l}}, y_{m_{l}}) \}$

SVM with only labelled data

 $\min_{w,b} \frac{1}{2} \|w\|_2^2$ w.b $y_i(w^{\mathsf{T}}x_i+b) \ge 1, \forall i \in [m_l]$ such that

Joachims'99

Unlabelled training dataset $S_{u} = \{x'_{1}, \dots, x'_{m_{u}}\}$

SVM with unlabelled data

$$\min_{\substack{w,b}} \quad \frac{1}{2} \|w\|_2^2$$

such that

$$y_i(w^{\top}x_i + b) \ge 1, \forall i \in [n]$$

 $y'_i(w^{\top}x'_i + b) \ge 1, \forall i \in [n]$
 $y'_i \in \{-1,1\}, \forall i \in [m_u]$

Find a labelling y'_i for the unlabelled samples and w, b that maximize margin over all samples

 m_1 m_{μ}

SEMI-SUPERVISED SVM

$$\begin{split} \min_{\substack{w,b}\\ w,b} & \frac{1}{2} \|w\|_2^2 \\ \text{such that} & y_i(w^\top x_i + b) \ge 1, \forall i \in [n]\\ & y_i'(w^\top x_i' + b) \ge 1, \forall i \in [n]\\ & y_i' \in \{-1,1\}, \forall i \in [m_u] \end{split}$$

• Heuristic method:

- First maximize margin with only labelled samples
- Use the w, b found to label the unlabelled samples
- Try flipping labels of unlabelled points and see if margin increases
- Keep going till no more improvements

Joachims'99

Not a convex problem! Convex once you fix y'_i for all $i \in [m_u]$.

 m_l

Find a labelling y'_i for the unlabelled samples and m_{μ} w, b that maximize margin over all samples

SEMI-SUPERVISED SVM - FAILURES

It is not always helpful though!

- If there is no margin
- If margin is satisfied in multiple ways

Margin but hard to know which one if we only have a few labelled points

Image source: http://www.cs.cmu.edu/~ninamf/courses/315sp19/lectures/4_22-SSL.pdf

Joachims'99

ACTIVE LEARNING

Unlabelled training dataset $\mathcal{S} = \{x_1, \dots, x_m\}$

 $m_1 < < m$

Domain expert

ACTIVE LEARNING - WHY?

We have access to choosing which examples to label, but why is it helpful?

- We can choose more informative examples to query
- Reduce sample complexity compared to passive algorithms

Image source: https://burrsettles.com/pub/settles.activelearning.pdf

ACTIVE LEARNING - THRESHOLDS

a

- Passive learning would require $O(1/\epsilon)$ samples
- Active learning can do this with $O(\log(1/\epsilon))$ samples

$$f_a(x) = \begin{cases} 1 & \text{if } x \ge a \\ -1 & \text{otherwise.} \end{cases}$$

VC dimension is 1

 \mathcal{X}

ACTIVE LEARNING - THRESHOLDS

Algorithm:

• Do binary search on the *m* unlabelled points Start by querying the median If + then recurse on the left half of the points If - then recurse on the right half of the points

$f_a(x) = \begin{cases} 1 & \text{if } x \ge a \\ -1 & \text{otherwise.} \end{cases}$

26

ACTIVE SVM

Unlabelled training dataset $\mathcal{S} = \{x_1, \dots, x_m\}$

Algorithm:

- Query a few random examples to start
- Repeat for T iterations:
 - Find the max-margin classifier for all the labelled examples so far
 - Identify the closest unlabelled example to the decision boundary and query its label

Tong & Koller'00

Uncertainty estimation - closest to boundary, most uncertain

ACTIVE SVM - UNCERTAINTY BASED

ACTIVE SVM - FAILURES

Can suffer from sampling bias

tru distribution

Tong & Koller'00

• As we run the algorithm, the labelled sample become less representative of the

Happens in practice too!

OTHER TECHNIQUES - DENSITY BASED

Centroid of largest unsampled cluster

OTHERTECHNIQUES - MAXIMAL DIVERSITY

OTHER TECHNIQUES - ENSEMBLE

SAFE ACTIVE LEARNING - DISAGREEMENT BASED

Overcome the tension between choosing uncertain points and being faithful to the true distribution

Let us assume the realizable setting:

• Fix a function class \mathcal{F}

• There is some $f_* \in \mathcal{F}$ such that for all inputs $x \in \mathcal{X}$, $y = f_*(x)$ **Definition (Version Space)**

For a given set of labelled examples $(x_1, y_1), \ldots, (x_{m_i}, y_{m_i})$ with $y_i = f_*(x_i)$, version space $VS(\mathcal{F})$ is the set of functions that are consistent with the labels, that is,

 $f \in \mathcal{F} \text{ iff } f(x_i) =$

$$= f_*(x_i) \text{ for all } i \in [m_l].$$

SAFE ACTIVE LEARNING - DISAGREEMENT BASED **Definition (Version Space)**

Definition (Disagreement Region) Part of the version space that still has uncertainty, that is,

For a given set of labelled examples $(x_1, y_1), \dots, (x_{m_i}, y_{m_i})$ with $y_i = f_*(x_i)$, version space $VS(\mathcal{F})$ is the set of functions that are consistent with the labels, that is, $f \in \mathcal{F}$ iff $f(x_i) = f_*(x_i)$ for all $i \in [m_i]$.

- $x \in DIS(VS(\mathcal{F}))$ iff $\exists f_1, f_2 \in VS(\mathcal{F})$ such that $f_1(x) \neq f_2(x)$.

SAFE ACTIVE LEARNING - DISAGREEMENT BASED

Algorithm:

- Query a few random points to start
- Let V_1 be the current version space
- For t = 1, ...
 - Query a few random points in $DIS(V_t)$
 - Update the version space to V_{t+1} using these points

Can stop when the disagreement region has very small mass/number of points

$DIS(V_t)$

SELF-SUPERVISED LEARNING

Unlabelled training dataset $\mathcal{S} = \{x_1, \dots, x_m\}$

image completion

rotation prediction

Extract representation

"jigsaw puzzle"

colorization

MODERN ML - REDUCE RELIANCE ON LABELS

Can we train machine learning models with less human supervision?

No labelled data

Unsupervised Learning

Clustering (K-means) Density Estimation (GMM) Dimensionality Reduction (PCA)

> Can identify structures or patterns in data

> > Self-supervised Learning

Fully labelled data

Supervised Learning

Regression (Linear Regression) Classification (SVM, Perceptron, Logistics Regression)

> Can learn mapping from input to label

Semi-supervised Learning

Active Learning

