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LOGISTICS - UPCOMING

Homework: 
HW0 due on Friday, Jan 20, 2023 end of day
Go to OHs if you have any clarifications about HW0
TAs will help review concepts
For those on waitlist, email your HW0 to Keshav and Wendi (head TAs)
HW1 will be out on Monday, Jan 23, 2023

Recitation:

Sign up link will be posted on Ed this week
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LOGISTICS - RECORDING

Recording Policy: 
Only if you are unwell, or dealing with some extenuating circumstances and 
have to miss class 
Request video access via an Ed message to Keshav or Wendi
Video lecture will be made available to you for a period of 1 week post the 
requested date
Recordings will be provided as is, not intended to replace lecture

We will run this honor-based, we will not ask any questions unless 
we notice excessive use 



4

OUTLINE - TODAY

Review of Supervised Learning
Binary Classification
Perceptron

History
Algorithm
Proof of convergence
Drawbacks

Logistic Regression
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SUPERVISED LEARNING - REVIEW

Inputs x ∈ 𝒳 Labels y ∈ 𝒴

Dog 
pictures

(  = Breeds)
"Pug"

"Chihuahua"

𝒴 Classification

Discrete labels

Market 
data

( Stock prices)
"$130.02"

𝒴 = Regression

Continuous labels

Task: Learn predictor f : 𝒳 → 𝒴

Predict future outcomes based on past outcomes
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SUPERVISED LEARNING - REVIEW

Loss function: What is the right loss function for the task?


Representation: What class of functions should we use for the task?

Optimization: How can we efficiently solve the empirical risk minimization?

Generalization: Will the predictor perform well on unseen data?
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SUPERVISED LEARNING - BINARY CLASSIFICATION

Input space: 


Output space: 


Predictor function: 


Loss function: 


Data:  drawn i.i.d. from distribution 

𝒳 ⊆ ℝd

𝒴 = {−1,1}

f : 𝒳 → 𝒴, f ∈ ℱ

ℓ( f(x), y) = {0 if f(x) = y
1 otherwise.

{(x1, y1), …, (xm, ym)} ⊂ 𝒳 × 𝒴 𝒟

we used  in the last class{0,1}
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CLASSIFICATION - PIPELINE

Training dataset 
𝒮 = {(x1, y1), (x2, y2), …, (xm, ym)}

Hypothesis class  ℱ

Minimize loss on 
training data

8

min
f∈ℱ

1
m

m

∑
i=1

1[ f(xi) ≠ yi]

Prediction function ̂f

Evaluation

R( ̂f ) = Pr
(x,y)∼𝒟 [ ̂f(x) ≠ y]

average number 
of mistakes
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HYPOTHESIS CLASS - LINEAR CLASSIFIER

Linear Classifier: ℱ := {x ↦ 𝗌𝗂𝗀𝗇(w⊤x + b) |w ∈ ℝd, b ∈ ℝ}

w⊤x + b = 0

w

w⊤x + b > 0

w⊤x + b < 0

weight bias

Perceptron
model of the biological neuron

Halfspace

𝗌𝗂𝗀𝗇(a) = {+1 if a ≥ 0,
−1 otherwise.

Step function
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HYPOTHESIS CLASS - LINEAR CLASSIFIER

Linear Classifier: ℱ := {x ↦ 𝗌𝗂𝗀𝗇(w⊤x) |w ∈ ℝd+1}
no bias

extra dimension

WLOG, we can assume no bias!

w⊤x = 0

w

w⊤x > 0

w⊤x < 0

Map:
 and x ↦ [x

1] w ↦ [w
b]

⟹ w⊤x + b ↦ w⊤x
no bias

extra dimension



Training Dataset: , 

Empirical Risk Minimization: Find  that minimizes


𝒮 = {(x1, y1), (x2, y2), …, (xm, ym)}
xi ∈ ℝd, yi ∈ {−1,1}

ŵ

̂𝖾𝗋𝗋 (w) =
1
m

m

∑
i=1

1 [𝗌𝗂𝗀𝗇(w⊤xi) ≠ yi]
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LINEAR CLASSIFICATION - TRAINING

How do we solve this minimization problem?
Hard in general, the problem is non-convex!
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ASSUMPTION - PERFECT CLASSIFIER

Perfect Classifier:  such that  and ∃w* y = 𝗌𝗂𝗀𝗇(w⊤
* x) ∥w*∥ = 1

Data is linearly separable

y = + 1

̂𝖾𝗋𝗋 (w*) =
1
m

m

∑
i=1

1 [𝗌𝗂𝗀𝗇(w⊤
* xi) ≠ yi] = 0

w⊤
* x = 0

w*

w⊤
* x > 0

w⊤
* x < 0

y = − 1
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ALGORITHM - PERCEPTRON

Frank Rosenblatt with a Mark 1 Perceptron in 1960

1958 
Electronic ‘Brain’ Teaches Itself

Lots of hype, expected to recognize people, and 
eventually gain ‘consciousness’
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PERCEPTRON - INTUITION

Suppose at time , example  is incorrectly classified

If  then 

If  then 

t xi ≠ 0

yi = 1 w⊤
t+1xi = w⊤

t xi + ∥xi∥2 > w⊤
t xi

yi = − 1 w⊤
t+1xi = w⊤

t xi − ∥xi∥2 < w⊤
t xi

Towards the positive side

Towards the negative side
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PERCEPTRON - INTUITION

Image source: https://www.cs.cornell.edu/courses/cs4780/2022sp/notes/Notes06.pdf
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PERCEPTRON - CONVERGENCE

Theorem:


The Perceptron algorithm stops after at most  rounds, and returns a 
hyperplane  such that all examples are correctly classified.

1/γ2

w

w⊤
* x = 0

w*

γ

Setting:


For all , 

Margin  is minimum distance of any point 
from the hyperplane

i ∈ [m] ∥xi∥ ≤ 1

γ

γ = min
i∈[m]

|w⊤
* xi |
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Setting:


For all , , 
Margin 

i ∈ [m] ∥xi∥ ≤ 1 ∥w*∥ = 1
γ = min

i∈[m]
|w⊤

* xi |

Theorem:


The Perceptron algorithm stops after at most  rounds, and returns a 
hyperplane  such that all examples are correctly classified.

1/γ2

w

On the board
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PERCEPTRON - IN ACTION
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PERCEPTRON - FAILURES

XOR:


Minsky and Papert in a 1969 book “Perceptrons” 
showed that Perceptron fails on XOR problems

Non-linearly separable data:


Separable in a lifted space

Noise:


Hard classifier, cannot model inherent noise

Led to the AI winter till mid 1980s

Kernels (later in class) XOR

Non-separable Data
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PERCEPTRON - SUMMARY

Input space: 


Output space: 


Hypothesis Class: 


Loss function: 


Assumption: Linearly separable data

Guarantee: Zero-error on training data after  iterations for margin 

𝒳 ⊆ ℝd

𝒴 = {−1,1}

ℱ := {x ↦ 𝗌𝗂𝗀𝗇(w⊤x + b) |w ∈ ℝd, b ∈ ℝ}

ℓ( f(x), y) = {0 if f(x) = y
1 otherwise.

1/γ2 γ


