CIS 5200: MACHINE LEARNING BINARY CLASSIFICATION AND PERCEPTRON

Content here draws from material by Yingyu Liang (Princeton), Christopher De Sa and Kilian Weinberger (Cornell)

17 January 2023

Surbhi Goel

Spring 2023

LOGISTICS - UPCOMING

Homework:

* HW0 due on Friday, Jan 20, 2023 end of day Go to OHs if you have any clarifications about HWO * TAs will help review concepts * HWI will be out on Monday, Jan 23, 2023

Recitation:

Sign up link will be posted on Ed this week

* For those on waitlist, email your HWO to Keshav and Wendi (head TAs)

LOGISTICS - RECORDING

Recording Policy:

- have to miss class
- Request video access via an Ed message to Keshav or Wendi
- requested date
- Recordings will be provided as is, not intended to replace lecture

we notice excessive use

* Only if you are unwell, or dealing with some extenuating circumstances and

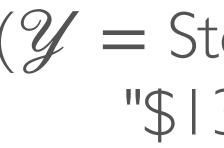
* Video lecture will be made available to you for a period of I week post the

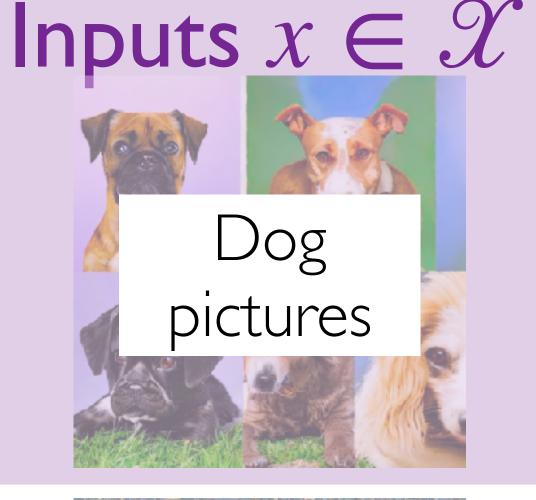
We will run this honor-based, we will not ask any questions unless

OUTLINE - TODAY

- Review of Supervised Learning
- Binary Classification
- * Perceptron
 - * History
 - * Algorithm
 - * Proof of convergence
 - * Drawbacks
- * Logistic Regression

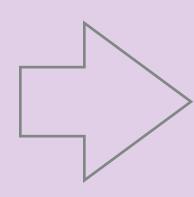
SUPERVISED LEARNING - REVIEW Predict future outcomes based on past outcomes





Labels $y \in \mathcal{Y}$

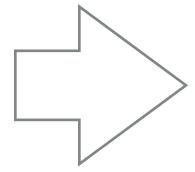
 $(\mathcal{Y} = \text{Breeds})$ "Pug" "Chihuahua"



Classification

Discrete labels

 $(\mathcal{Y} = \text{Stock prices})$ "\$130.02"



Regression

Continuous labels

Task: Learn predictor $f: \mathcal{X} \to \mathcal{Y}$

SUPERVISED LEARNING - REVIEW

Loss function: What is the right loss function for the task?

Representation: What class of functions should we use for the task?

Optimization: How can we efficiently solve the empirical risk minimization?

Generalization: Will the predictor perform well on unseen data?

SUPERVISED LEARNING - BINARY CLASSIFICATION

Input space: $\mathscr{X} \subseteq \mathbb{R}^d$ **Output space:** $\mathcal{Y} = \{-1, 1\}$ we used $\{0, 1\}$ in the last class **Predictor function:** $f: \mathcal{X} \to \mathcal{Y}, f \in \mathcal{F}$ **Loss function:** $\ell(f(x), y) = \begin{cases} 0 & \text{if } f(x) = y \\ 1 & \text{otherwise.} \end{cases}$ **Data:** $\{(x_1, y_1), \dots, (x_m, y_m)\} \subset \mathcal{X} \times \mathcal{Y}$ drawn i.i.d. from distribution \mathcal{D}

CLASSIFICATION - PIPELINE

Training dataset $\mathcal{S} = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\}$

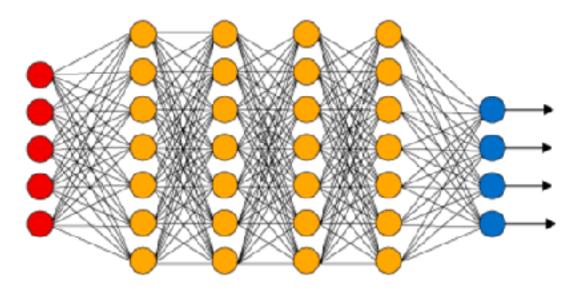
Breed : CHIHUAHUA

Breed : CHIHUAHUA

Breed : PUG

Breed : CHIHUAHUA

Hypothesis class ${\mathcal F}$



min – f∈F W

> average number of mistakes

Prediction function \hat{f}

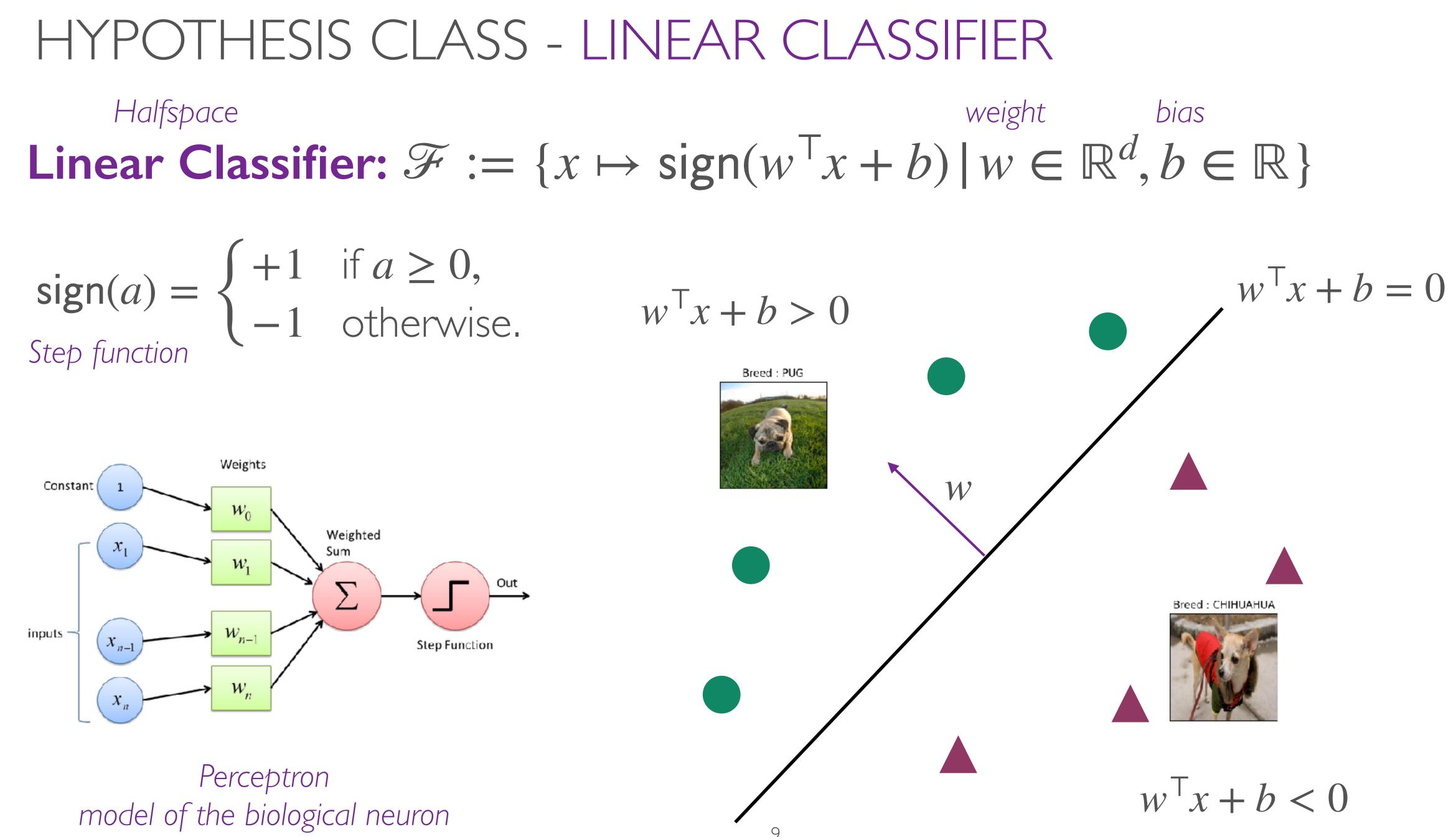


Evaluation

$$R(\hat{f}) = \Pr_{(x,y)\sim\mathcal{D}} \left[\hat{f}(x) \neq y \right]$$

Minimize loss on training data

$$\frac{1}{n} \sum_{i=1}^{m} 1[f(x_i) \neq y_i]$$

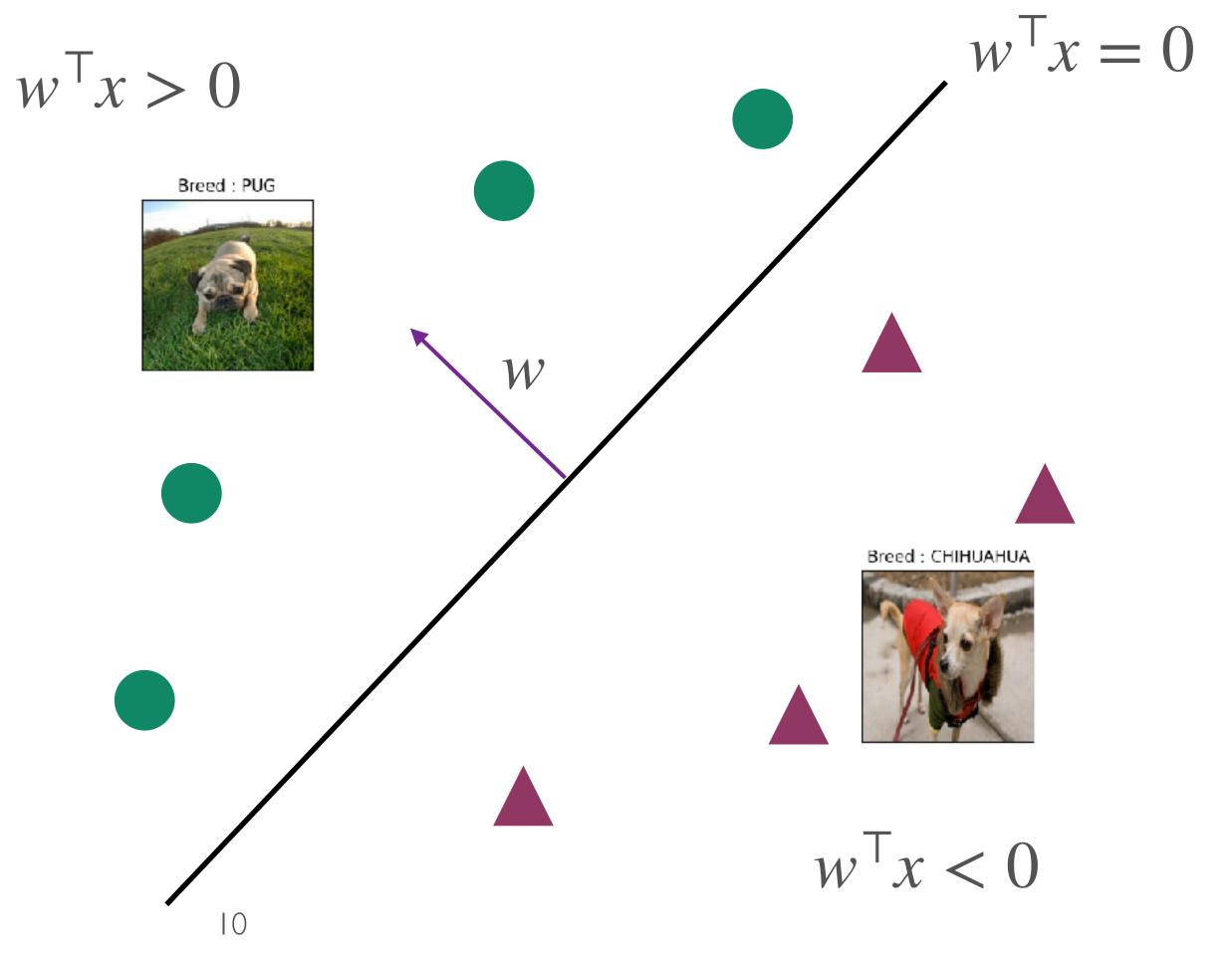


HYPOTHESIS CLASS - LINEAR CLASSIFIER extra dimension Linear Classifier: $\mathscr{F} := \{x \mapsto \operatorname{sign}(w^{\top}x) | w \in \mathbb{R}^{d+1}\}$ no bias

Map:

$$x \mapsto \begin{bmatrix} x \\ 1 \end{bmatrix}$$
 and $w \mapsto \begin{bmatrix} w \\ b \end{bmatrix}$
extra dimension
 $\implies w^{\mathsf{T}}x + b \mapsto w^{\mathsf{T}}x$
no bias

WLOG, we can assume no bias!



I INFAR CI ASSIFICATION - TRAINING

Training Dataset: $\mathcal{S} = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\},\$ $x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$

Empirical Risk Minimization: Find \hat{w} that minimizes

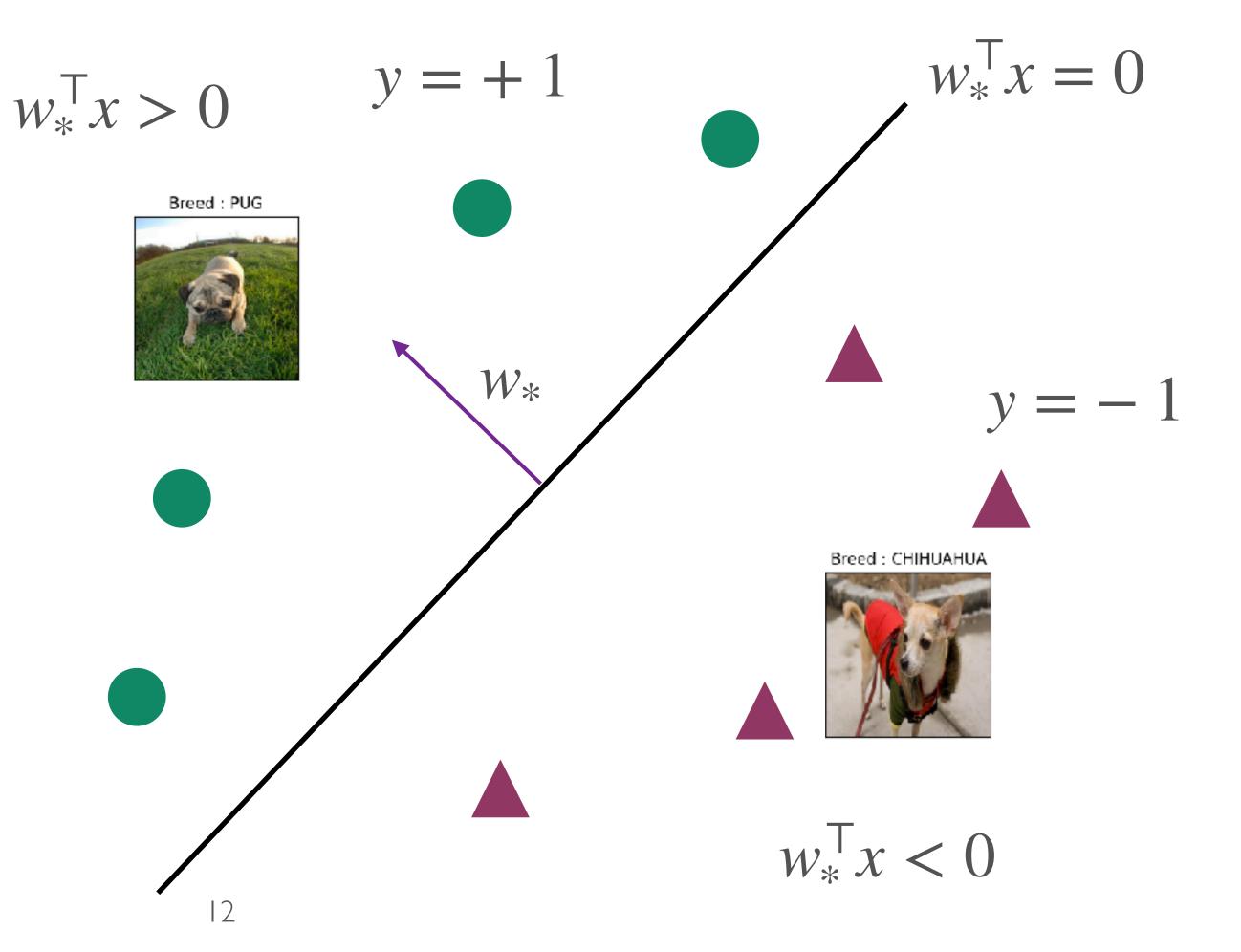
- $\widehat{\operatorname{err}}(w) = \frac{1}{m} \sum_{i=1}^{m} 1 \left[\operatorname{sign}(w^{\mathsf{T}} x_i) \neq y_i \right]$
- How do we solve this minimization problem?
 - Hard in general, the problem is non-convex!

ASSUMPTION - PERFECT CLASSIFIER

Perfect Classifier: $\exists w_*$ such that $y = \operatorname{sign}(w_*^\top x)$ and $||w_*|| = 1$

Data is linearly separable

$$\widehat{\operatorname{err}}(w_*) = \frac{1}{m} \sum_{i=1}^m 1 \left[\operatorname{sign}(w_*^{\mathsf{T}} x_i) \neq y_i \right] = 0$$



ALGORITHM - PERCEPTRON

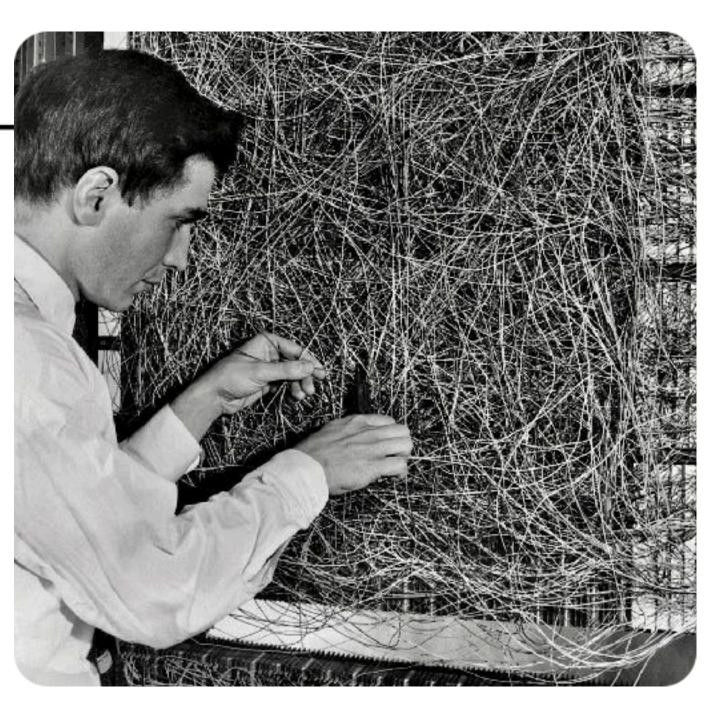
Algorithm 1: Perceptron

Initialize $w_1 = 0 \in \mathbb{R}^d$ for t = 1, 2, ... do else output w_t end

Ehe New Hork Eimes 1958 Electronic 'Brain' Teaches Itself

Lots of hype, expected to recognize people, and eventually gain 'consciousness'

if $\exists i \in [m] \ s.t. \ y_i \neq \text{sign}\left(w_t^\top x_i\right)$ then update $w_{t+1} = w_t + y_i x_i$



Frank Rosenblatt with a Mark I Perceptron in 1960

PERCEPTRON - INTUITION

Algorithm 1: Perceptron

Initialize $w_1 = 0 \in \mathbb{R}^d$ for t = 1, 2, ... do else output w_t end

Suppose at time t, example $x_i \neq 0$ is incorrectly classified * If $y_i = 1$ then $w_{t+1}^\top x_i = w_t^\top x_i + ||x_i||^2 > w_t^\top x_i$ Towards the positive side $\texttt{If } y_i = -1 \text{ then } w_{t+1}^\top x_i = w_t^\top x_i - \|x_i\|^2 < w_t^\top x_i \quad \text{Towards the negative side}$

if $\exists i \in [m] \ s.t. \ y_i \neq \text{sign}(w_t^\top x_i)$ then update $w_{t+1} = w_t + y_i x_i$

PERCEPTRON - INTUITION

Algorithm 1: Perceptron

Initialize $w_1 = 0 \in \mathbb{R}^d$ for t = 1, 2, ... do if $\exists i \in [m] \ s.t. \ y_i \neq \text{sign}\left(w_t^\top x_i\right)$ then update $w_{t+1} = w_t + y_i x_i$ else output w_t end

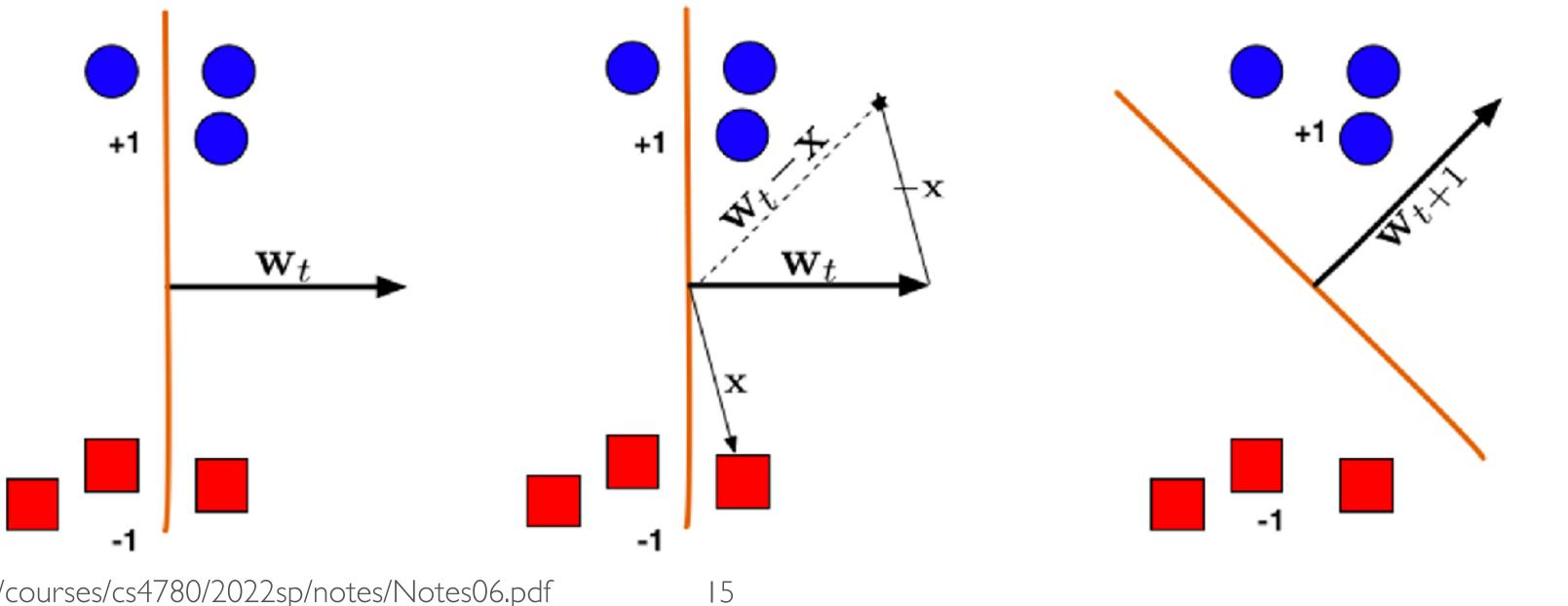


Image source: https://www.cs.cornell.edu/courses/cs4780/2022sp/notes/Notes06.pdf

PERCEPTRON - CONVERGENCE

Setting:

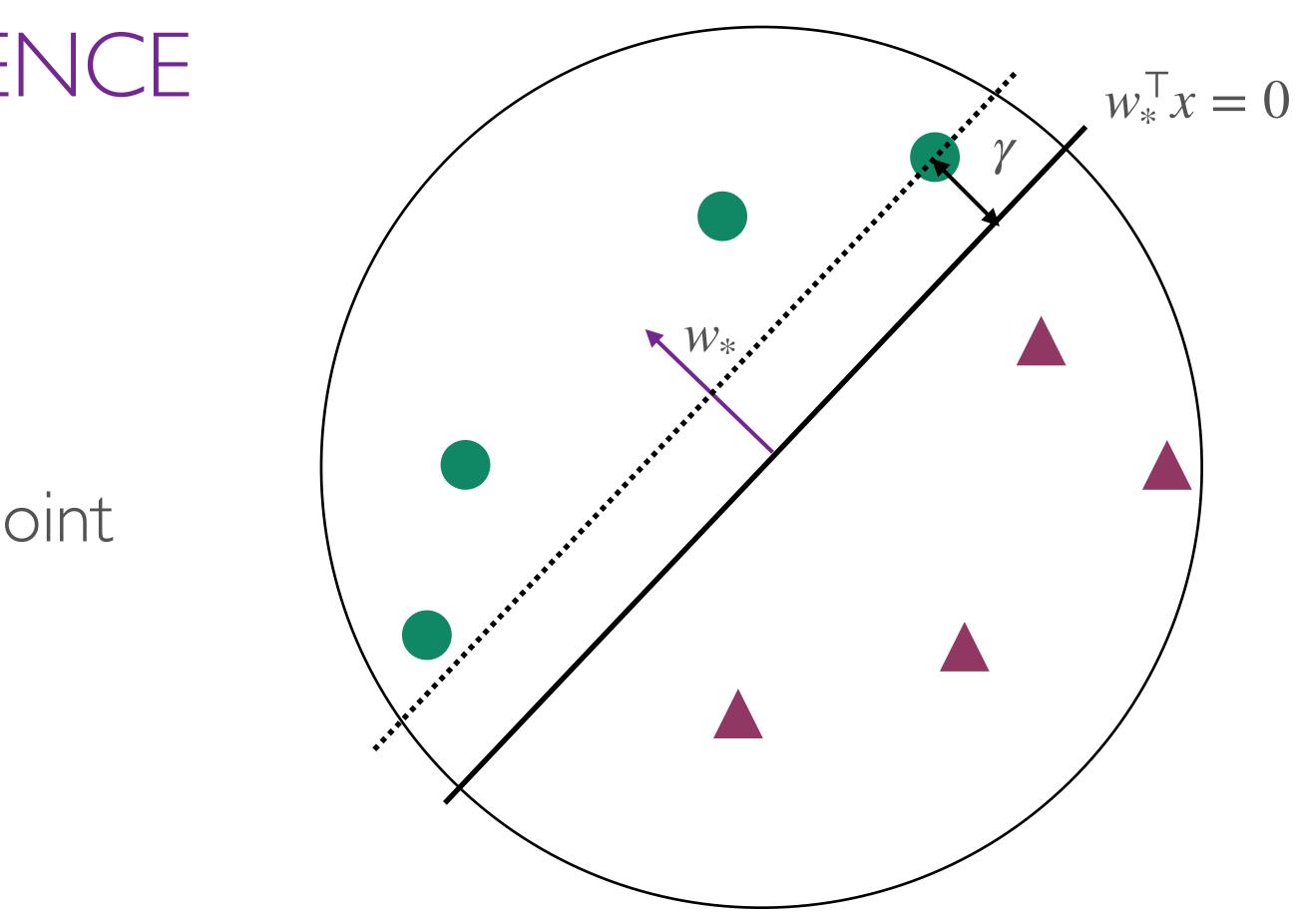
For all $i \in [m]$, $||x_i|| \leq 1$

Margin γ is minimum distance of any point from the hyperplane

$$\gamma = \min_{i \in [m]} |w_*^\top x_i|$$

Theorem:

hyperplane w such that all examples are correctly classified.



The Perceptron algorithm stops after at most $1/\gamma^2$ rounds, and returns a

Algorithm 1: Perceptron

Initialize $w_1 = 0 \in \mathbb{R}^d$ for t = 1, 2, ... do if $\exists i \in [m] \ s.t. \ y_i \neq \text{sign} (u$ else output w_t end

Setting:

For all $i \in [m]$, $||x_i|| \leq 1$, $||w_*|| = 1$ Margin $\gamma = \min_{i \in [m]} |w_*^\top x_i|$

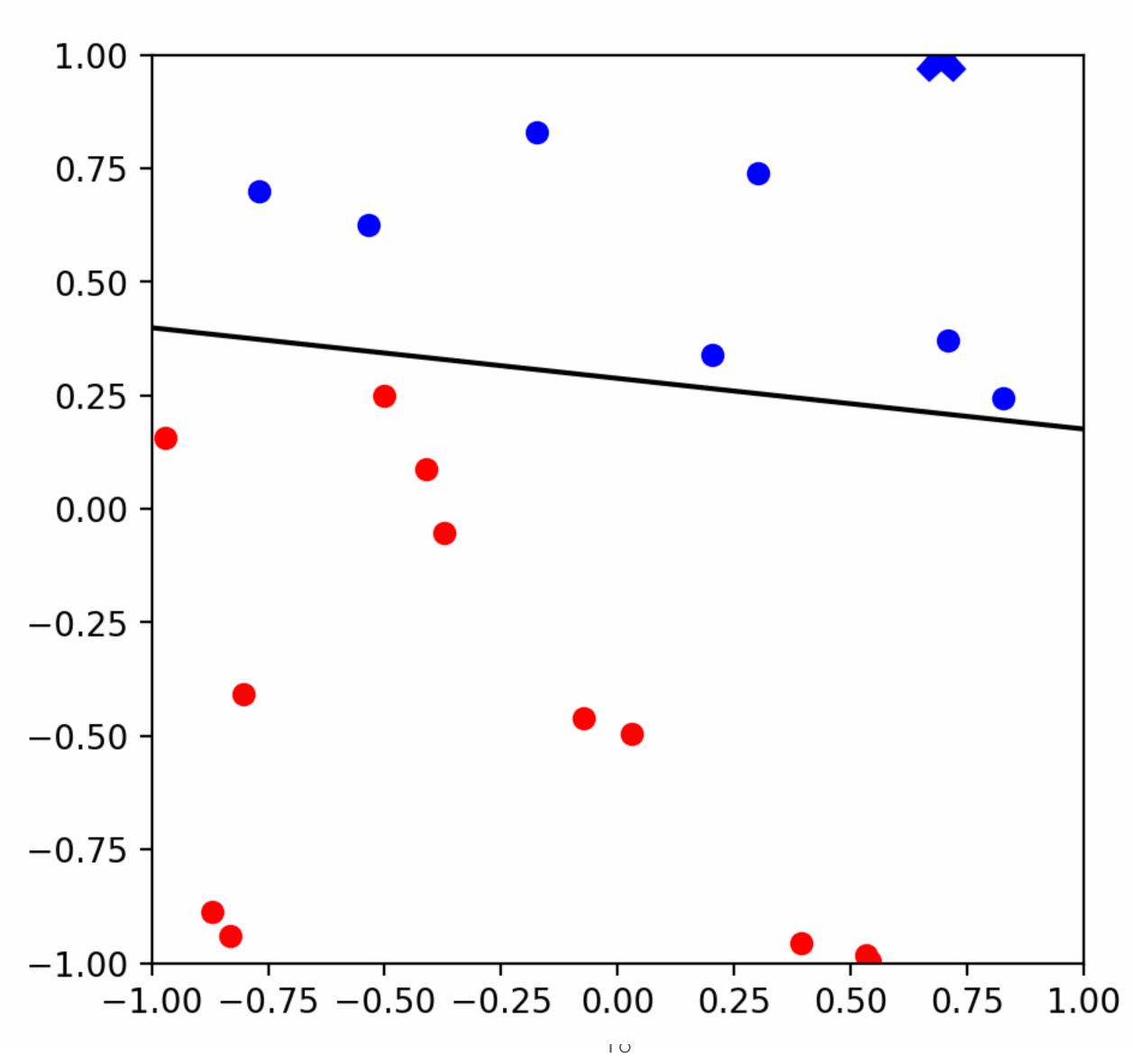
Theorem:

The Perceptron algorithm stops after at most $1/\gamma^2$ rounds, and returns a hyperplane w such that all examples are correctly classified.

if $\exists i \in [m] \ s.t. \ y_i \neq \text{sign}\left(w_t^\top x_i\right)$ then update $w_{t+1} = w_t + y_i x_i$

On the board

PERCEPTRON - IN ACTION



m = 20, Iteration 1

PERCEPTRON - FAILURES

Led to the Al winter till mid 1980s **XOR:**

Minsky and Papert in a 1969 book "Perceptrons" showed that Perceptron fails on XOR problems

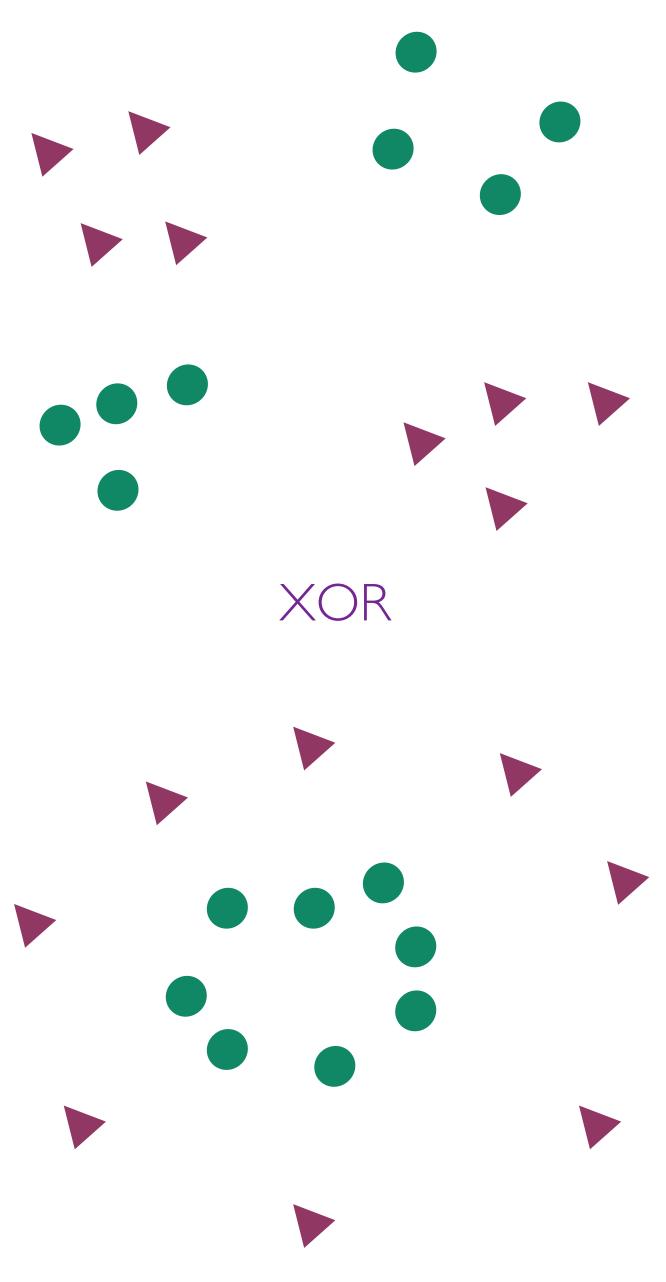
Non-linearly separable data:

Separable in a lifted space

Noise:

Hard classifier, cannot model inherent noise

Kernels (later in class)



Non-separable Data

PERCEPTRON - SUMMARY

Input space: $\mathscr{X} \subseteq \mathbb{R}^d$ **Output space:** $\mathcal{Y} = \{-1, 1\}$ **Hypothesis Class:** $\mathcal{F} := \{x \mapsto \operatorname{sign}(w^{\top}x + b) | w \in \mathbb{R}^d, b \in \mathbb{R}\}$ **Loss function:** $\ell(f(x), y) = \begin{cases} 0 & \text{if } f(x) = y \\ 1 & \text{otherwise.} \end{cases}$

Assumption: Linearly separable data

Guarantee: Zero-error on training data after $1/\gamma^2$ iterations for margin γ