CIS 5200: MACHINE LEARNING BOOSTING

Content here draws from material by Rob Schapire (Princeton), Cynthia Rudin (Duke), and Kilian Weinberger (Cornell)

28 March 2023

Surbhi Goel

Spring 2023

OUTLINE - TODAY

* History

* Setup

* General Boosting Algorithm

* AdaBoost

- * Example
- * Proof of Convergence
- * Generalization
- * Optimization Viewpoint

RFCALL

Last class we studied **Bagging**

- distribution
- Aggregate learned classifiers on each new training dataset
- Helps reduce variance

Today: How to reduce bias?

• Generate new training datasets by sampling with replacement from the empirical

SIMPLE LEARNERS

Suppose you have simple/weak learners that are correct $\sim 55\%$ of the time (slightly better than random guessing)

High bias

Learner I: Does the email contain the word 'free'?

Learner 2: Does the email contain more than half the letters capitalized?

Learner 3: Does the email contain a long URL address?

CAN WE BOOST SIMPLE LEARNERS?

Suppose you have simple/weak learners that are correct $\sim 55\%$ of the time (slightly better than random guessing)

Question: Can we combine a bunch of these simple/weak learners to get a **complex/strong** learner that gets close to perfect accuracy?

Famously asked by Michael Kearns in 1988 in a machine learning class project!

High bias

YES, WE CAN!

accuracy?

Answer I (1990): Yes, we can! Weak learnability implies strong learnability, and vice-versa.

Question (1988): Can we combine a bunch of these simple/weak learners to get a complex/strong learner that gets close to perfect

Answer 2 (1996): Yes, and there is an efficient algorithm to do so! Gödel prize (2003)

GENERAL BOOSTING RECIPE

THE SAME WEIGHTS

AND THE SAMPLES ARE WEIGHTED ACCORDINGLY

3. THE LEARNER IS WEIGHTED TOO, GETTING A HIGH WEIGHT IF IT DID A GOOD JOB PREDICTING THE SAMPLE LABELS

. . .

5. REPEAT UNTIL N LEARNERS ARE REACHED OR DATA IS FIT WELL ENOUGH

Learner N

BOOSTING VS BAGGING

Image source: https://towardsdatascience.com/what-is-boosting-in-machine-learning-2244aa196682

BAGGING

GENERAL BOOSTING SCHEME

Training set $S = \{(x_1, y_1), \dots, (x_m, y_m)\}$ where $y_i \in \{-1, 1\}$

Algorithm 1: Generic Boosting Scheme

for t = 1, 2, ..., T do Construct discrete distribution μ_t over [m]Run weak learner \mathcal{A} on training data sampled according to μ_t to get classifier f_t with small error over μ_t , $\epsilon_t = \Pr_{i \sim \mu_t} [f_t(x_i) \neq y_i] = 1/2 - \gamma_t \leq 1/2 - \gamma$ (by weak learning) assumption).

end

Output final classifier f constructed using f_1, \ldots, f_T .

Question I: How do we choose μ_t ? Question 2: How do we construct final classifier f using f_1, \ldots, f_T ?

Weak learner \mathscr{A} guarantees error $\leq 1/2 - \gamma$ for any distribution

ADABOOST - ADAPTIVE BOOSTING

Question I: How do we choose μ_t ? For all $i \in [m]$,

 $\mu_{1,i} = - m$ $\mu_{t+1,i} = \frac{\mu_{t,i}}{Z_t} \times \exp(-\alpha_t y_i f_t(x_i))$ Normalizing factor

Optimal choice of shrinkage $\alpha_t = \frac{1}{2} \log \alpha_t$

Equal weight initially

Weight increased if incorrect and decreased if correct

$$g\left(\frac{1-\epsilon_t}{\epsilon_t}\right) \text{ where } \epsilon_t = \Pr_{i \sim \mu_t}[f_t(x_i) \neq y]$$

ADABOOST - ADAPTIVE BOOSTING

Question 2: How do we construct final classifier f using f_1, \ldots, f_T ?

Weighted combination of the weak learners The weight is based on how good the weak learner is

Weak Leaner - horizontal or vertical linear classifiers

Image source: https://media.nips.cc/Conferences/2007/Tutorials/Slides/schapire-NIPS-07-tutorial.pdf

 $\epsilon_2 = 0.21$ $\alpha_2 = 0.65$

 $\epsilon_3 = 0.14$ $\alpha_3 = 0.92$ $\boldsymbol{\mathcal{I}}$

Image source: https://media.nips.cc/Conferences/2007/Tutorials/Slides/schapire-NIPS-07-tutorial.pdf

TRAINING ERROR GUARANTEE

Theorem:

Let f be the output of AdaBoost after T steps, then we have $\hat{R}(f) = \frac{1}{m} \sum_{i=1}^{m} 1[f(x_i) \neq y_i] \le \exp\left(-2\gamma^2 T\right).$

Training error goes down exponentially fast with the number of iterations

Weak learner \mathcal{A} guarantees error $\leq 1/2 - \gamma$ for any distribution

Step I: Bound on $\mu_{T+1,i}$ $\mu_{T+1,i} = \frac{\exp\left(-y_i f(x_i)\right)}{m \prod_{t=1}^{T} Z_t}$

Step 2: Bound on $\hat{R}(f)$ $\hat{R}(f) \leq \prod^{I} Z_t$ t=1

Step 3: Bound on Z_t $Z_t \leq \exp(-2\gamma^2)$

 $\hat{R}(f) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}[f(x_i) \neq y_i] \qquad Z_t = \sum_{j=1}^{m} \mu_{t,j} \exp(-\alpha_t y_j f_t(x_j))$

GENERALIZATION PERFORMANCE

We reduced bias by creating a more complex classifier What about the variance of the final classifier for increasing T?

Test error improves even after training error is 0!

BIAS/VARIANCE - WHY NOTRADEOFF?

AdaBoost ensures large margin! (By Schapire, Freund, Bartlett & Lee)

- Training error measures only correctness of prediction
- A better notion is confidence, how sure is the learner about the prediction
- In AdaBoost, the final classifier is a weighted vote of the weak learners Margin - how strong is the vote?
- = total weight of correct weak learners total weight of incorrect weak learners High High Low confidence confidence confidence +1Incorrect

	# rour	
	5	100
train error	0.0	0.0
test error	8.4	3.3
% margins ≤ 0.5	7.7	0.0
minimum margin	0.14	0.52
	-	-

All points have margin at least 0.5

nds 1000 0.0 3.1 0.0 0.55

Large margin \implies simpler classifier and better generalization

OPTIMIZATION VIEWPOINT OF BOOSTING

space of linear combinations of weak classifiers

Recall that
$$\hat{R}(f) \leq \prod_{t=1}^{T} Z_t = \frac{1}{m} \sum_{i=1}^{m} \exp(-y_i f(x_i))$$
 where $f(x) = \sum_t \alpha_t f_t(x)$

- Coordinate descent would choose a coordinate and find the corresponding α to maximally decrease the loss
- AdaBoost is essentially doing coordinate descent on this loss
- An alternate way to view AdaBoost is via functional gradient descent

AdaBoost can be viewed as coordinate descent on a loss function over the

PROS AND CONS

Benefits of AdaBoost

- Fast
- Simple
- Only hyper-parameter is T
- Flexible can use any weak learning algorithm
- Do not need to know how good the weak learner is
- Powerful only weak learners needed

Caveats of AdaBoost

- Performance dependent on data and weak learner
- Can overfit if weak learner is too complex
- Can also underfit if weak
 learner is not good
- Not robust to noise