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RECALL

Behavior of the function on our training dataset Is defined as:

Maximum possible labelings over all training sets of size m i1s then given by:

[g(m) = maxg. g=, | H15(S)|

Growth function

Theorem:

For any ERM fS over training set S of size m, with probability 1 — o,
log(|I1z(2m)|/6) }

m

R(fs) < [



VC DIMENSION

Vapnik-Chervonenkis (VC) dimension can be used to bound 11g(m)

Definition (shattering):
A set S of inputs is said to be shattered by function class F if |T15(S)| = 2'°! that

s, # can realize all possible labelings for the set of points in .

Definition (VC dimension):

VC dimension of a function class & (VC(&)) is the size of the largest set § that
can be shattered by &.



CONNECTION -VC DIMENSION & GROW IH FUNCTION
Theorem (Sauer’s Lemma):
Let d = VC(F), then

o [Ig(m) =2"form < d

o [lg(m) = O(m%) form > d

Theorem:

For any ERM fS over training set S of size m > d, with probability 1 — o,
d + log(1/0)

m

R(fs) S



VC DIMENSION

Definition (VC dimension):

VC dimension of a function class & (VC(&)) is the size of the largest set § that
can be shattered by &.

To show that a function class has VC(&) = d, we must show that,
° Thereis a set § of d points that is shattered by &#
° Thereisnoset S of d+ 1 points that is shattered by &




EXAMPLES
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EXAMPLE - LINEAR CLASSIFIERS fu(x) = sgn(w 'x)

What is the VC dimension of the class of linear classifiers?



UNIFORM CONVERGENCE - VC CLASSES

VC dimension actually gives a stronger suarantee of uniform convergence, that Is,
with probability 1 — o, for all f € &,

. d+log(1/o
R(p) - k()| 51/ 22

This implies that with more samples, we can actually have good estimates

for the true risk of all functions in & using our dataset not just the ERM



UNIFORM CONVERGENCE - FINITE CLASSES

For finite class &, given training dataset of size m, with probability 1 — 6 over the
draw of the dataset, for all f € F,

. 1 F | + log(1/6
R - ()| 5200

The proof uses the following two properties:

Union bound: Pr{A U B| < Pr[A] + Pr[B]

Hoeffding’s inequality: Consider a coin with bias p flipped m times. Let X be the number

X

— =P
m

of times the coin showed up as heads, then Pr [ > (—J] < 2 exp(—2me?)

10



BEYOND REALIZABILITY - AGNOSTIC LEARNING

We can generalize PAC learning to handle non-realizable setting where the
label can be arprtrary.

Definition:

A function class & is agnostically PAC learnable if there exists an algorithm &f and a

function mg : (0,1)* = N with the following property:
for every distribution & on feature space and labels & X %, and for all €,6 € (0,1),

it &f Is given access to a training dataset $ of size m > mg(€, 0) where the examples
are drawn from &, then with probability 1 — 6 (over the choice of the training
dataset), &f outputs a predictorf such that

R(f) <minR(f) + ¢ .

fes#
N



BEYOND REALIZABILITY - AGNOSTIC LEARNING

Consider a function class & with VC dimension d

Theorem:

With probability 1 — o, for any ERM f € arg min g R(f) over training set size m,

we have,
R - min R(f) § [ e
= m
. d+ loe(1/6
R - R 54/ ++()

Wi

°roof using uniform convergence,



BIAS/VARIANCE - TRADEOFFS

R() < min R(/) + | 200
fes# m

Bias Variance

Bias: How well can your function class approximate the labeling function?

Variance: How much does the classifier change based on changing the dataset?



BIAS/VARIANCE - TRADEOFFS R mink(p) [ L0

fesF m

-or fixed data set size m

A

Total Error

Optimum Model Complexity

Variance

Error

Bias

5 >
Model Complexity

Image source: https://en.wikipedia.org/wiki/Bias?%E2%80%9 3variance_tradeoff |4



For fixec

Image source:

BIAS/VARIANCE - TRADEOFFS

C

http://scott.fortmann-roe.co

ata set size m

m/docs/BiasVariance

Low Bias

High Bias

html

Low Variance High Variance

R(f) < min R(f)

fes#

V

d + log(1/6)

m


http://scott.fortmann-roe.com/docs/BiasVariance.html

BIAS/VARIANCE - TRADEOFFS

Underfitting Overfitting
Bias ;1611;71 R(f) is large Variance |R(f) — R(f)‘ s large

Image source: https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/ |6



BIAS/VARIANCE - TRADEOFFS R mink(p) [ L0

fe# m

For fixed function class &

High bias

N\

Test error

Error .
Regime #2

Regime #1

High variance

Acceptable test error €

Training error

# Training instances

m

Image source: https://www.cs.cornell.edu/courses/cs4/780/20 | 8fa/lectures/lecturenote | 2.html | /



DRAWBACKS - PAC BOUNDS

R(f) < min R(f)

\/d+10g(1/5)

fesF m
A . . Classical Regime: Modern Regime:
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Why!? Our bounds are worst-case.
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Double descent by Belkin, Hsu, Ma, Mandal’ |9

Do not account for a

minimizer, the distribution of features, the distribution of

Image source: https://www.cs.cornell.edu/courses/cs4/780/20 | 8fa/lectures/lecturenote | 2.html
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