CIS 5200: MACHINE LEARNING LEARNINGTHEORY

Content here draws from material by Rob Schapire (Princeton), Hamed Hassani (UPenn) and Michael Kearns (UPenn)

16 March 2023

Surbhi Goel

Spring 2023

OUTLINE - TODAY

Recap: VC Dimension VC Dimension of Linear Classifiers Uniform Convergence Beyond Realizability Bias-Variance Tradeoffs

Behavior of the function on our training dataset is defined as:

Maximum possible labelings over all training sets of size m is then given by: $\Pi_{\mathcal{F}}(m) = \max_{S:|S|=m} |\Pi_{\mathcal{F}}(S)|$ Growth function

Theorem:

For any ERM \hat{f}_{S} over training set S of size m, with probability $1 - \delta$, $\log(|\Pi_{\mathcal{F}}(2m)|/\delta)]$ **^** $R(f_S) \leq$ M

$\Pi_{\mathscr{F}}(S) = \{ (f(x_1), \dots, f(x_m)) : f \in \mathscr{F} \}$

VC DIMENSION

Vapnik-Chervonenkis (VC) dimension can be used to bound $\Pi_{\mathscr{F}}(m)$

Definition (shattering):

is, \mathcal{F} can realize all possible labelings for the set of points in S.

Definition (VC dimension):

can be shattered by \mathcal{F} .

A set S of inputs is said to be shattered by function class \mathcal{F} if $|\Pi_{\mathcal{F}}(S)| = 2^{|S|}$, that

VC dimension of a function class $\mathcal{F}(VC(\mathcal{F}))$ is the size of the largest set S that

CONNECTION - VC DIMENSION & GROWTH FUNCTION **Theorem (Sauer's Lemma):** Let $d = VC(\mathcal{F})$, then • $\Pi_{\mathscr{F}}(m) = 2^m$ for $m \leq d$ • $\Pi_{\mathcal{F}}(m) = O(m^d)$ for m > d

Theorem:

 $R(\hat{f}_S) \lesssim \frac{d + \log(1/\delta)}{2}$

For any ERM \hat{f}_{S} over training set S of size m > d, with probability $1 - \delta$,

M

VC DIMENSION

Definition (VC dimension):

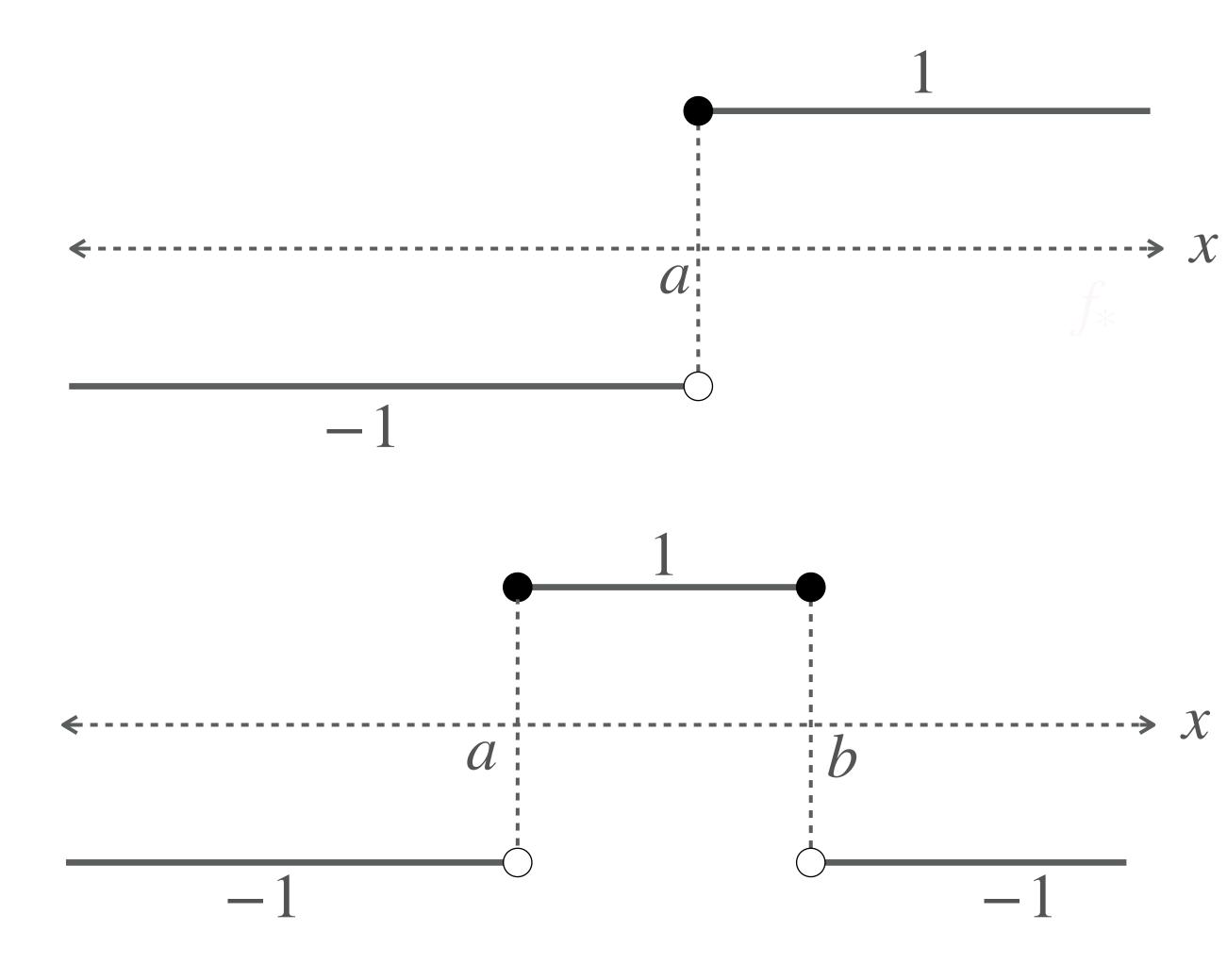
can be shattered by \mathcal{F} .

To show that a function class has $VC(\mathcal{F}) = d$, we must show that,

- There is a set S of d points that is shattered by \mathcal{F}
- There is no set S of d+1 points that is shattered by \mathcal{F}

VC dimension of a function class $\mathcal{F}(VC(\mathcal{F}))$ is the size of the largest set S that

EXAMPLES



$$f_a(x) = \begin{cases} 1 & \text{if } x \ge a \\ -1 & \text{otherwise.} \end{cases}$$
VC dimension is 1

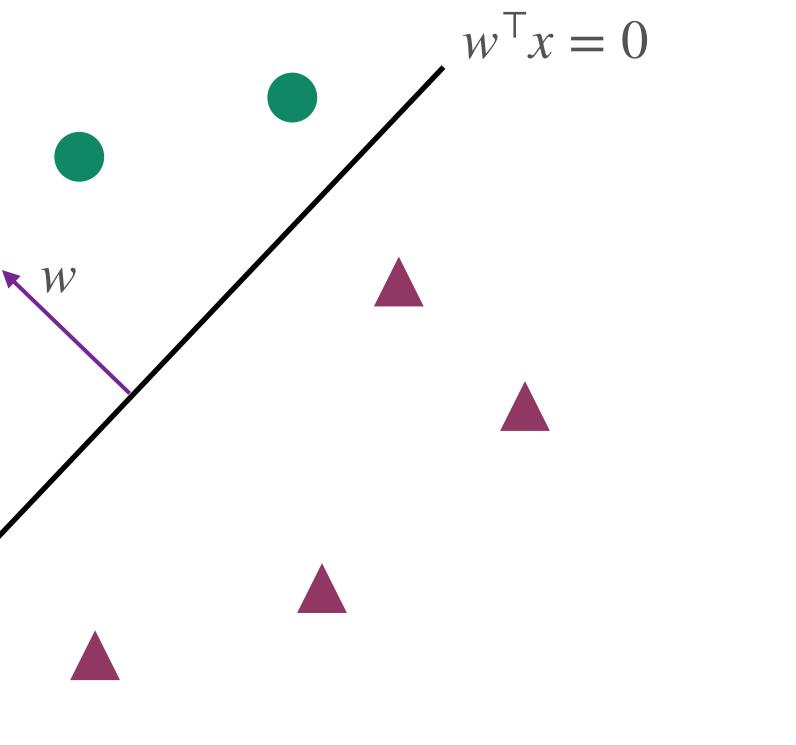
$$f_{a,b}(x) = \begin{cases} 1 & \text{if } a \leq x \leq b \\ -1 & \text{otherwise.} \end{cases}$$

VC dimension is 2

EXAMPLE - LINEAR CLASSIFIERS

What is the VC dimension of the class of linear classifiers?

 $f_w(x) = \operatorname{sgn}(w^{\top}x)$



UNIFORM CONVERGENCE - VC CLASSES

with probability $1 - \delta$, for all $f \in \mathcal{F}$,

$$\left| R(f) - \hat{R}(f) \right| \lesssim$$

This implies that with more samples, we can actually have good estimates for the true risk of all functions in \mathcal{F} using our dataset not just the ERM

VC dimension actually gives a stronger guarantee of uniform convergence, that is,

$$\lesssim \sqrt{\frac{d + \log(1/\delta)}{m}}.$$

UNIFORM CONVERGENCE - FINITE CLASSES

For finite class \mathcal{F} , given training dataset of size m, with probability $1 - \delta$ over the draw of the dataset, for all $f \in \mathcal{F}$,

$$|R(f) - \hat{R}(f)| \lesssim \sqrt{\frac{\log|\mathcal{F}| + \log(1/\delta)}{m}}$$

The proof uses the following two properties: Union bound: $\Pr[A \cup B] \leq \Pr[A] + \Pr[B]$

Hoeffding's inequality: Consider a coin with bias p flipped m times. Let X be the number of times the coin showed up as heads, then $\Pr\left[\left|\frac{X}{m} - p\right| > \epsilon\right] \le 2\exp(-2m\epsilon^2)$

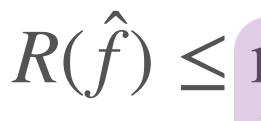


BEYOND REALIZABILITY - AGNOSTIC LEARNING

label can be arbitrary.

Definition:

function $m_{\mathcal{F}}: (0,1)^2 \to \mathbb{N}$ with the following property: dataset), \mathscr{A} outputs a predictor \hat{f} such that



We can generalize PAC learning to handle non-realizable setting where the

- A function class \mathcal{F} is agnostically PAC learnable if there exists an algorithm \mathscr{A} and a
- for every distribution \mathcal{D} on feature space and labels $\mathcal{X} \times \mathcal{Y}$, and for all $\epsilon, \delta \in (0,1)$, if \mathscr{A} is given access to a training dataset S of size $m \geq m_{\mathscr{F}}(\epsilon, \delta)$ where the examples are drawn from \mathcal{D} , then with probability $1 - \delta$ (over the choice of the training

$$\min_{f \in \mathcal{F}} R(f) + \epsilon \, .$$

BEYOND REALIZABILITY - AGNOSTIC LEARNING

Consider a function class \mathcal{F} with VC dimension d **Theorem:**

we have,

 $R(\hat{f}) - \min_{f \in \mathscr{F}} R(f)$

Proof using uniform convergence, R(f)

With probability $1 - \delta$, for any ERM $\hat{f} \in \arg \min_{f \in \mathcal{F}} \hat{R}(f)$ over training set size m,

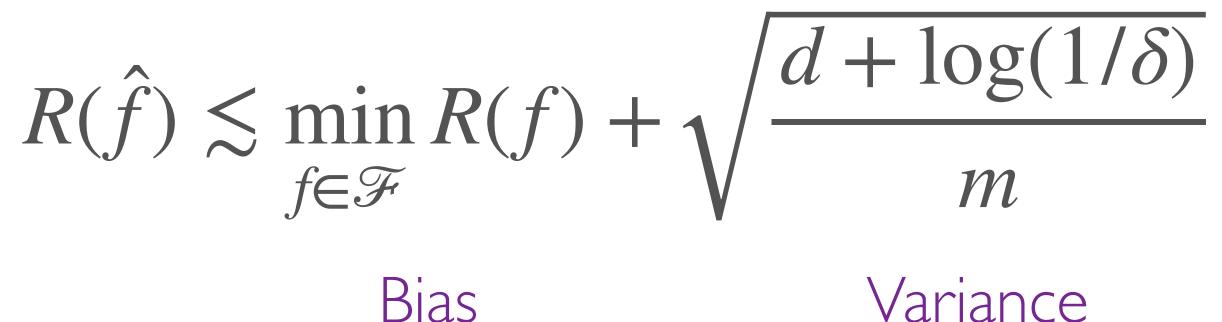
$$f) \lesssim \sqrt{\frac{d + \log(1/\delta)}{m}}$$

$$\hat{r}$$
) $-\hat{R}(f) \bigg| \lesssim \sqrt{\frac{d + \log(1/\delta)}{m}}$

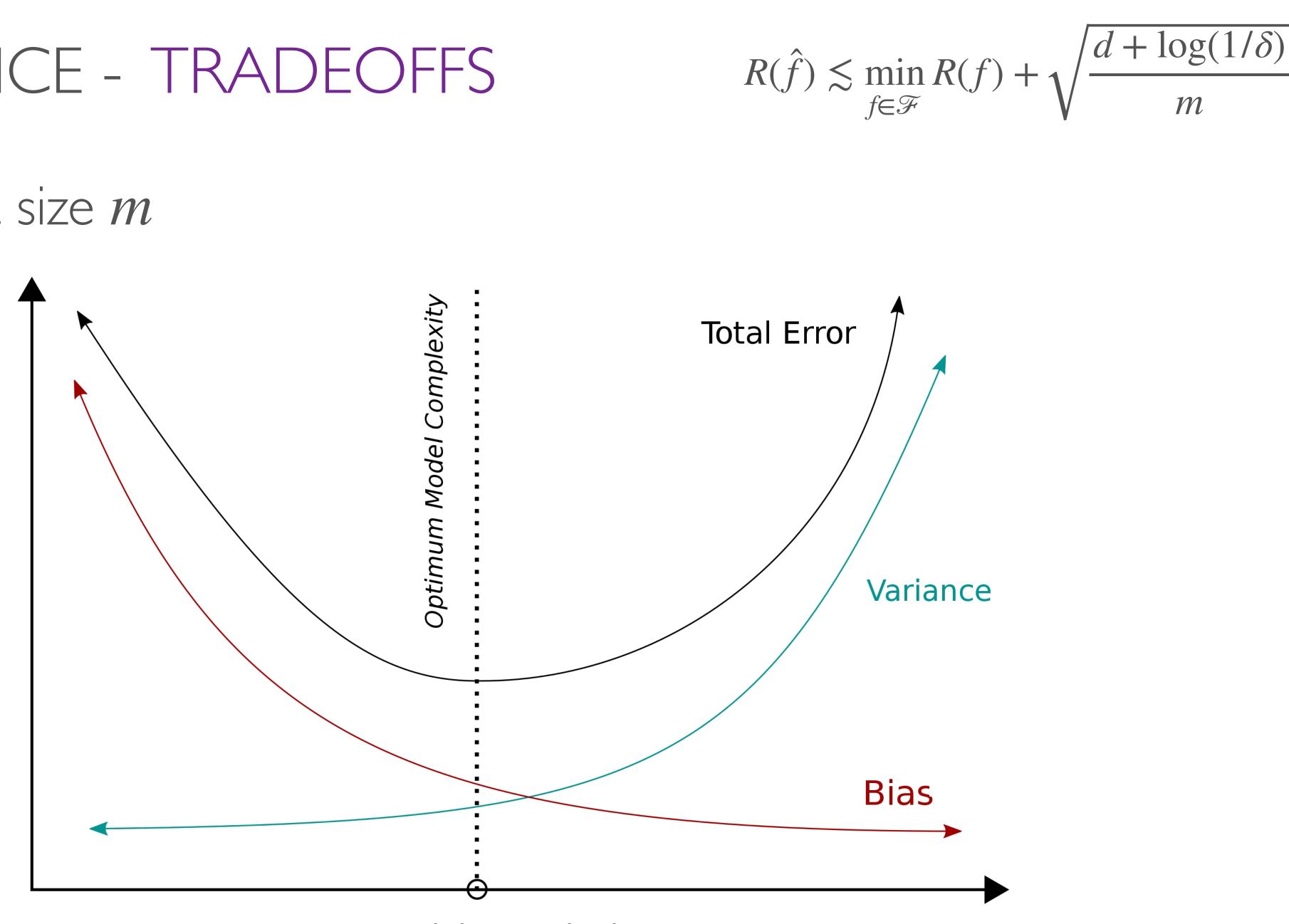
Bias

Bias: How well can your function class approximate the labeling function?

Variance: How much does the classifier change based on changing the dataset?



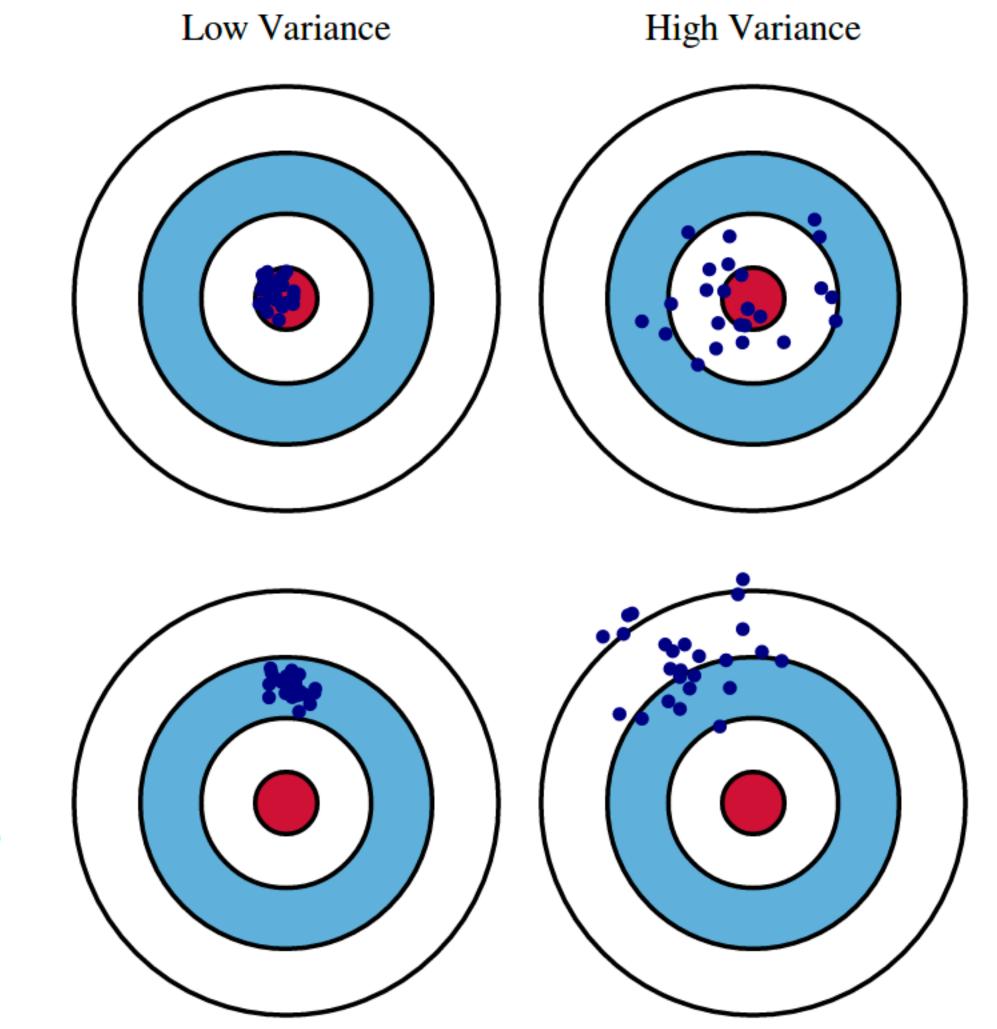
For fixed data set size m



Error

Model Complexity

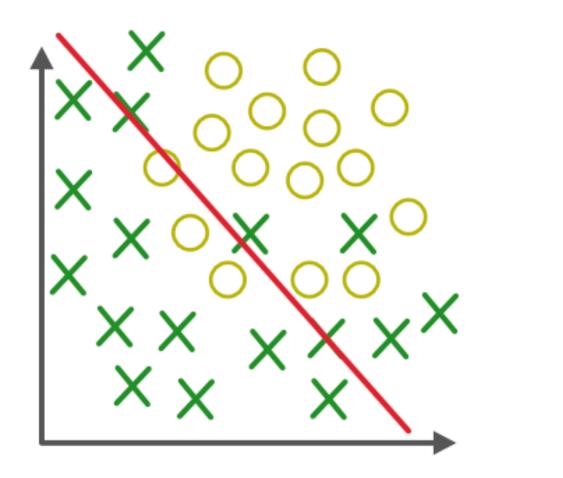
For fixed data set size m

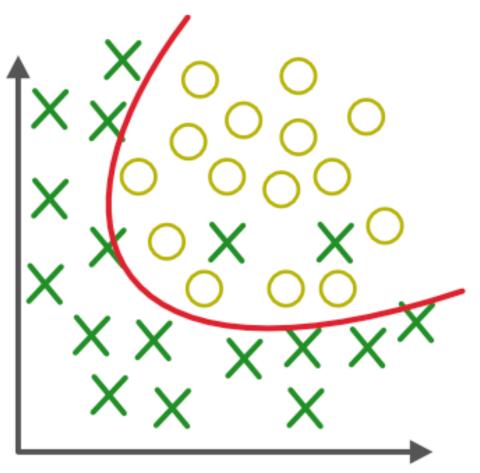


Low Bias

High Bias

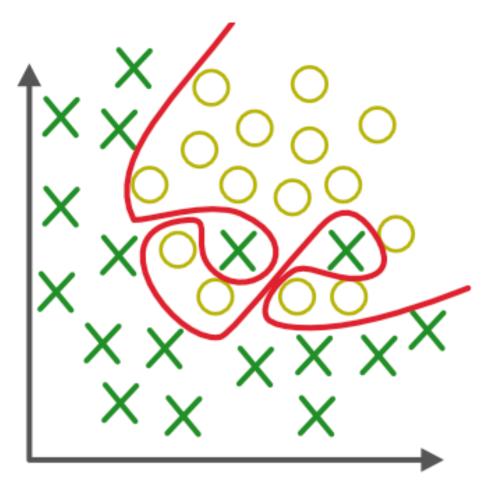
 $d' d + \log(1/\delta)$ $R(\hat{f}) \lesssim \min_{f \in \mathcal{F}} R(f) + 1$ т



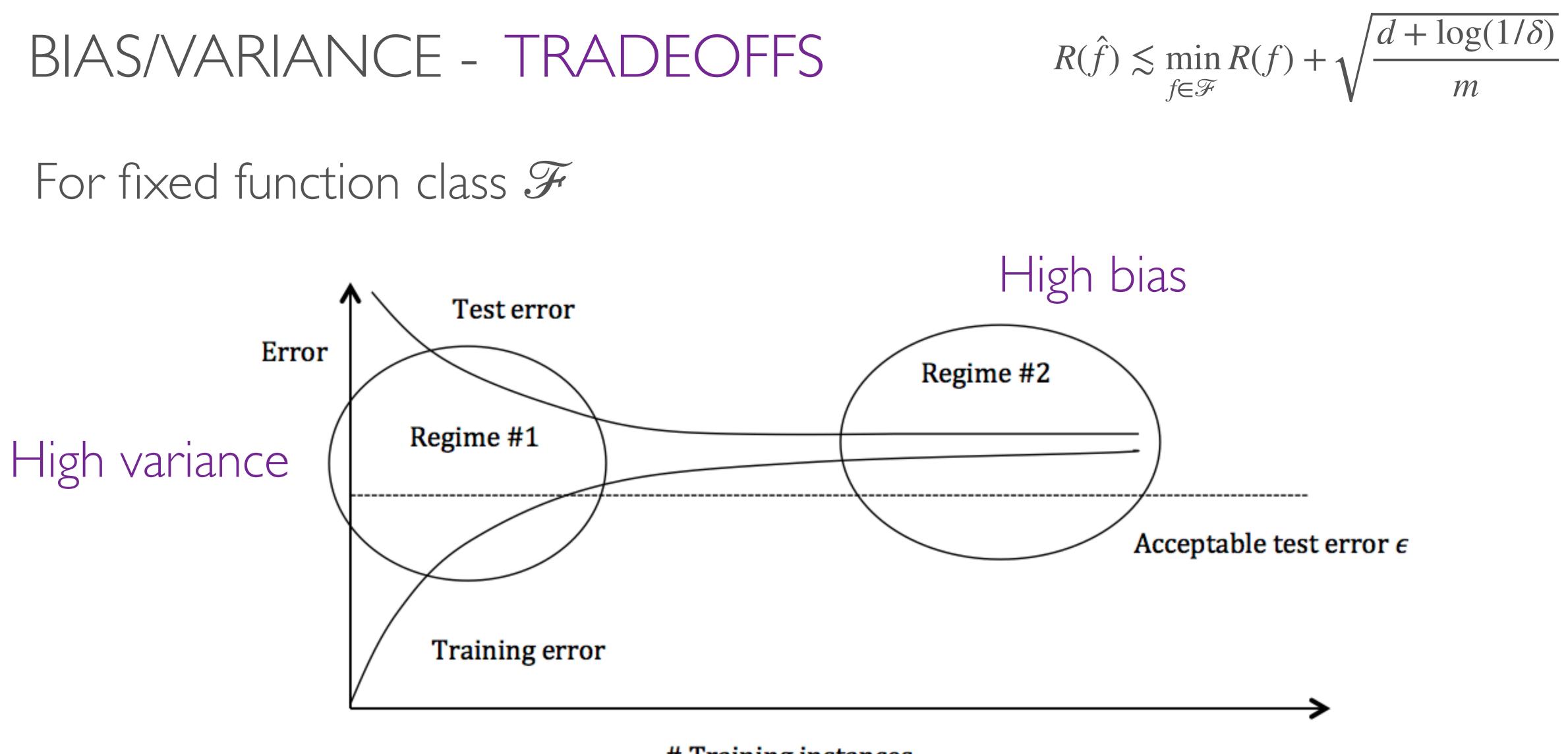


Underfitting Bias $\min R(f)$ is large f∈ℱ

Image source: https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/



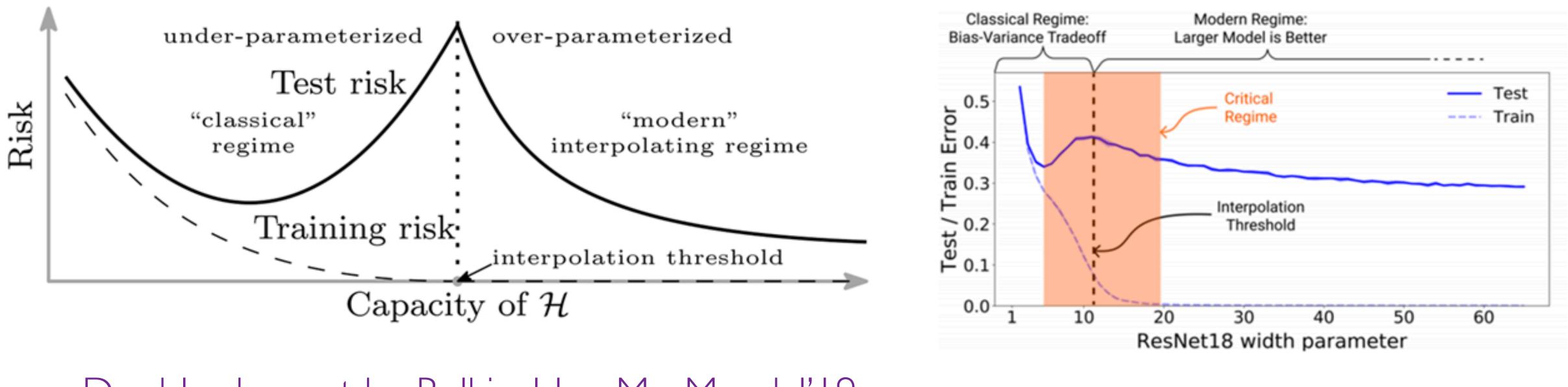
Overfitting Variance $|R(f) - \hat{R}(f)|$ is large



Training instances

M

DRAWBACKS - PAC BOUNDS



Double descent by Belkin, Hsu, Ma, Mandal' 19

minimizer, the distribution of features, the distribution of labels

 $d + \log(1/\delta)$ $R(\hat{f}) \lesssim \min_{f \in \mathcal{F}} R(f) + 1$ M

Why? Our bounds are worst-case. Do not account for algorithm used to find