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OUTLINE - TODAY

Recap:
VC Dimension
VC Dimension of Linear Classifiers

Uniform Convergence
Beyond Realizability
Bias-Variance Tradeoffs



Theorem: 

For any ERM   over training set  of size , with probability ,̂fS S m 1 − δ

R( ̂fS) ≤ ⌈ log( |Πℱ(2m) | /δ)
m ⌉ .
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RECALL

Behavior of the function on our training dataset is defined as:
Πℱ(S) = {( f(x1), …, f(xm)) : f ∈ ℱ}

Maximum possible labelings over all training sets of size  is then given by:m
Πℱ(m) = maxS;|S|=m |Πℱ(S) |

Growth function
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VC DIMENSION

Vapnik-Chervonenkis (VC) dimension can be used to bound Πℱ(m)

Definition (shattering): 

A set  of inputs is said to be shattered by function class  if , that 
is,  can realize all possible labelings for the set of points in .

S ℱ |Πℱ(S) | = 2|S|

ℱ S

Definition (VC dimension): 

VC dimension of a function class  ( ) is the size of the largest set  that 
can be shattered by .

ℱ VC(ℱ) S
ℱ
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CONNECTION - VC DIMENSION & GROWTH FUNCTION
Theorem (Sauer’s Lemma): 

Let , then

 for 

 for 

d = VC(ℱ)

Πℱ(m) = 2m m ≤ d

Πℱ(m) = O(md) m > d

Theorem: 

For any ERM   over training set  of size , with probability ,̂fS S m > d 1 − δ

R( ̂fS) ≲
d + log(1/δ)

m
.
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VC DIMENSION

Definition (VC dimension): 

VC dimension of a function class  ( ) is the size of the largest set  that 
can be shattered by .

ℱ VC(ℱ) S
ℱ

To show that a function class has , we must show that,
There is a set  of  points that is shattered by 
There is no set  of  points that is shattered by 

VC(ℱ) = d
S d ℱ

S d + 1 ℱ
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EXAMPLES

f*
a

1

−1

x
fa(x) = {1  if x ≥ a

−1  otherwise.

fa,b(x) = {1  if a ≤ x ≤ b
−1  otherwise.

a

1

−1

x

−1

b

VC dimension is 1

VC dimension is 2
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EXAMPLE - LINEAR CLASSIFIERS fw(x) = 𝗌𝗀𝗇(w⊤x)

What is the VC dimension of the class of linear classifiers? 

w⊤x = 0

w
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UNIFORM CONVERGENCE

This implies that with more samples, we can actually have good estimates 

for the true risk of all functions in  using our dataset not just the ERMℱ

VC dimension actually gives a stronger guarantee of uniform convergence, that is, 
with probability , for all ,

.

1 − δ f ∈ ℱ

R( f ) − R̂( f ) ≲
d + log(1/δ)

m

UNIFORM CONVERGENCE - VC CLASSES
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UNIFORM CONVERGENCE - FINITE CLASSES

The proof uses the following two properties:

For finite class , given training dataset of size , with probability  over the 
draw of the dataset, for all ,

.

ℱ m 1 − δ
f ∈ ℱ

R( f ) − R̂( f ) ≲
log |ℱ | + log(1/δ)

m

Union bound: 

Hoeffding’s inequality: Consider a coin with bias  flipped  times. Let  be the number 

of times the coin showed up as heads, then 

Pr[A ∪ B] ≤ Pr[A] + Pr[B]

p m X

Pr [ X
m

− p > ϵ] ≤ 2 exp(−2mϵ2)
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We can generalize PAC learning to handle non-realizable setting where the 
label can be arbitrary.

BEYOND REALIZABILITY - AGNOSTIC LEARNING

Definition: 
A function class  is agnostically PAC learnable if there exists an algorithm  and a 
function  with the following property: 

for every distribution  on feature space and labels , and for all , 
if  is given access to a training dataset  of size  where the examples 
are drawn from , then with probability  (over the choice of the training 
dataset),  outputs a predictor  such that 

ℱ 𝒜
mℱ : (0,1)2 → ℕ

𝒟 𝒳 × 𝒴 ϵ, δ ∈ (0,1)
𝒜 S m ≥ mℱ(ϵ, δ)

𝒟 1 − δ
𝒜 ̂f

R( ̂f ) ≤ min
f∈ℱ

R( f ) + ϵ .
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Consider a function class  with VC dimension 

Theorem: 

With probability , for any ERM  over training set size , 
we have,

ℱ d

1 − δ ̂f ∈ arg minf∈ℱ R̂( f ) m

R( ̂f ) − min
f∈ℱ

R( f ) ≲
d + log(1/δ)

m

BEYOND REALIZABILITY - AGNOSTIC LEARNING

Proof using uniform convergence, .R( f ) − R̂( f ) ≲
d + log(1/δ)

m
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R( ̂f ) ≲ min
f∈ℱ

R( f ) +
d + log(1/δ)

m

BIAS/VARIANCE -  TRADEOFFS

Bias Variance

Bias: How well can your function class approximate the labeling function?

Variance: How much does the classifier change based on changing the dataset?
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For fixed data set size m

BIAS/VARIANCE -  TRADEOFFS R( ̂f ) ≲ min
f∈ℱ

R( f ) +
d + log(1/δ)

m

Image source: https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff
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For fixed data set size m

BIAS/VARIANCE -  TRADEOFFS R( ̂f ) ≲ min
f∈ℱ

R( f ) +
d + log(1/δ)

m

Image source: http://scott.fortmann-roe.com/docs/BiasVariance.html

http://scott.fortmann-roe.com/docs/BiasVariance.html
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BIAS/VARIANCE -  TRADEOFFS

Variance  is large|R( f ) − R̂( f ) |Bias  is largemin
f∈ℱ

R( f )

OverfittingUnderfitting

Image source: https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/
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BIAS/VARIANCE -  TRADEOFFS

For fixed function class ℱ

R( ̂f ) ≲ min
f∈ℱ

R( f ) +
d + log(1/δ)

m

Image source: https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote12.html

m

High bias

High variance
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DRAWBACKS -  PAC BOUNDS R( ̂f ) ≲ min
f∈ℱ

R( f ) +
d + log(1/δ)

m

Image source: https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote12.html

Double descent by Belkin, Hsu, Ma, Mandal’19

Why? Our bounds are worst-case. Do not account for algorithm used to find 
minimizer, the distribution of features, the distribution of labels


