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OUTLINE - TODAY

Recap:
Probably Approximately Correct (PAC) learning
Finite Function Classes are PAC learnable

What about infinite classes?
VC Dimension
VC Classes are PAC Learnable
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GENERALIZATION

We want the predictor to perform well not just on the training data but on 
examples it will see in the future.

Recall how we formalized this:

Training dataset is drawn independently and identically from some unknown but 
fixed distribution 

loss on future examples = loss over the distribution
𝒟

R( ̂f ) = 𝔼(x,y)∼𝒟 [ℓ( ̂f(x), y)]
We want to minimize true risk  but only have access to a training setR
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PROBABLY APPROXIMATELY CORRECT (PAC) LEARNING
Introduced by Leslie Valiant in 1984, captures the notion of finding approximately good 
predictors with high probability

Definition:

A function class  is PAC learnable if there exists an algorithm  and a function 

 with the following property: 

for every labelling function , for every distribution  on feature space , and for 
all , if  is given access to a training dataset  of size  where 
the features are drawn from  and labels are according to ,  then with probability 

 (over the choice of the training dataset),  outputs a predictor  such that 

ℱ 𝒜
mℱ : (0,1)2 → ℕ

f ∈ ℱ 𝒟 𝒳
ϵ, δ ∈ (0,1) 𝒜 S m ≥ mℱ(ϵ, δ)

𝒟 f
1 − δ 𝒜 ̂f

R( ̂f ) = Pr
x∼𝒟 [ ̂f(x) ≠ f(x)] ≤ ϵ .

Error parameter ϵ
Confidence parameter δ
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FINITE CLASSES ARE PAC LEARNABLE BY ERM

Consider a finite function class 

Theorem:


Every finite function class  is PAC learnable with sample complexity

where the algorithm  is any empirical risk minimization algorithm.

ℱ = {f1, …, f|ℱ|}

ℱ

mℱ(ϵ, δ) ≤ ⌈ log( |ℱ | /δ)
ϵ ⌉

𝒜
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FINITE CLASSES ARE PAC LEARNABLE BY ERM

Consider a finite function class 

Theorem:


For any ERM   over training set  of size , with probability , 

ℱ = {f1, …, f|ℱ|}

̂fS S m 1 − δ

R( ̂fS) ≤
log( |ℱ | /δ)

m
.
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Consider the class  of integer weight linear classifiers where the parameter 
 is such that each  for 

How many possible functions are there?


What is the sample complexity for PAC learning?

ℱ
w wi ∈ {−10,…,0,…,10} i ∈ [d]

EXAMPLE - INTEGER WEIGHT LINEAR CLASSIFIER

mℱ(ϵ, δ) ≲
d log 21 + log(1/δ)

ϵ

21d
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WHAT ABOUT INFINITE CLASSES?

If the size of the class is infinite, then the previous bound is useless.

What quantity should replace ?log |ℱ |

This is all possible labeling that the training points could have according to ℱ

Let us think about the behavior of the function on our training dataset:
Πℱ(S) = {( f(x1), …, f(xm)) : f ∈ ℱ}
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WHAT ABOUT INFINITE CLASSES?

Let us think about the behavior of the function on our training dataset:
Πℱ(S) = {( f(x1), …, f(xm)) : f ∈ ℱ}

What is an upper bound on ?Πℱ(m) 2m

But for many , this is actually much smaller!ℱ

Define the maximum possible labelings over all training sets of size m
Πℱ(m) = maxS;|S|=m |Πℱ(S) |

Growth function
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(SOME) INFINITE CLASSES ARE PAC LEARNABLE BY ERM

Consider an infinite function class 

Theorem:


For any ERM   over training set  of size , with probability ,

ℱ

̂fS S m 1 − δ

R( ̂fS) ≤ ⌈ log( |Πℱ(2m) | /δ)
m ⌉ .

Note that if  then this is vacuous!Πℱ(m) = 2m

We will not cover the proof in class since it is a bit involved
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EXAMPLE - THRESHOLDS

f*
a

1

−1

x

fa(x) = {1  if x ≥ a
−1  otherwise.

Consider a dataset of three points 

How are the possible labelings with the class of thresholds?


x1 < x2 < x3
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EXAMPLE - INTERVALS fa,b(x) = {1  if a ≤ x ≤ b
−1  otherwise.

Consider a dataset of three points 

How are the possible labelings with the class of intervals?


x1 < x2 < x3

a

1

−1

x

−1

b
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GENERAL BOUNDS - VC DIMENSION

There is a notion of complexity called Vapnik-Chervonenkis (VC) dimension that 
bounds Πℱ(m)

Definition (shattering):


A set  of inputs is said to be shattered by function class  if , that 
is,  can realize all possible labelings for the set of points in .

S ℱ |Πℱ(S) | = 2|S|

ℱ S

Definition (VC dimension):


VC dimension of a function class  ( ) is the size of the largest set  that 
can be shattered by .

ℱ VC(ℱ) S
ℱ
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GENERAL BOUNDS - VC DIMENSION

Definition (VC dimension):


VC dimension of a function class  ( ) is the size of the largest set  that 
can be shattered by .

ℱ VC(ℱ) S
ℱ

To show that a function class has , we must show that,
There is a set  of  points that is shattered by 
There is no set  of  points that is shattered by 

VC(ℱ) = d
S d ℱ

S d + 1 ℱ
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EXAMPLE - THRESHOLDS

f*
a

1

−1

x

fa(x) = {1  if x ≥ a
−1  otherwise.

What is the VC dimension of the class of thresholds?
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EXAMPLE - INTERVALS fa,b(x) = {1  if a ≤ x ≤ b
−1  otherwise.

What is the VC dimension of the class of intervals?


a

1

−1

x

−1

b
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CONNECTION - VC DIMENSION & GROWTH FUNCTION
Theorem (Sauer’s Lemma):


Let , then

 for 

 for 

d = VC(ℱ)

Πℱ(m) = 2m m ≤ d

Πℱ(m) = O(md) m > d

Theorem:


For any ERM   over training set  of size , with probability ,̂fS S m > d 1 − δ

R( ̂fS) ≲
d log m + log(1/δ)

m
.
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EXAMPLE - RECTANGLES f(x) = {1  if inside the rectangle
−1  otherwise.

What is the VC dimension of the class of rectangles?


1 −1
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EXAMPLE - LINEAR CLASSIFIERS fw(x) = 𝗌𝗀𝗇(w⊤x)

What is the VC dimension of the class of linear classifiers?


w⊤x = 0

w
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CONCLUSION

Theorem:


For any ERM   over training set  of size , with probability ,̂fS S m > d 1 − δ

R( ̂fS) ≲
d + log(1/δ)

m
.

To quantify how many samples we need to learn a particular function class, we can 
use the VC dimension as a complexity measure


