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OUTLINE - TODAY

*k Recap:
*k Probably Approximately Correct (PAC) learning

*k Finrte Function Classes are PAC learnable
% What about infinrte classes?

2% VC Dimension

sk VC Classes are PAC Learnable




GENERALIZATION

We want the predictor to perform well not just on the training data but on
examples it will see In the future.

Recall how we formalized this:

Training dataset Is drawn independently and identically from some unknown but
fixed distribution &

loss on future examples = loss over the distribution

R(f) = Eqyypog |20, 9)]

We want to minimize true risk R but only have access to a training set
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PROBABLY APPROXIMATELY CORRECT (PAC) LEARNING

Introduced by Leslie Valiant in 1984, captures the notion of finding approximately sood

predictors with high probability Error parameter e
Confidence parameter o
Definition:

A function class & Is PAC learnable if there exists an algorithm &f and a function

mq : (0,1)> = N with the following property:

for every labelling function f € &, for every distribution & on feature space &', and for
all €,0 € (0,1),if & is given access to a training dataset § of size m > mg (€, 0) where
the features are drawn from & and labels are according to f, then with probability
1 — 0 (over the choice of the training dataset), & outputs a predictorf such that

R() = Pr [fo) #fw)| <e.

x~
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FINITE CLASSES ARE PAC LEARNABLE BY ERM

Consider a finrte function class

Theorem:

F = h ---af\%}

Every finite function class & is PAC learnable with sample complexity

m?]r(ea 5)

where the algorithm & is any em

. [log(\ \/5)}
€

dirical risk minimization algorithm.




FINITE CLASSES ARE PAC LEARNABLE BY ERM

Consider a finite function class # = {f}, ..., fi(}

Theorem:

~or any ERM fS over training set § of size m, with probability 1 — o,
. log(| # |/0)

m




EXAMPLE - INTEGER WEIGHT LINEAR CLASSIFIER

Consider the class & of integer weight linear classifiers where the parameter
w is such that each w, € {—10,...,0,...,10} for i € [d]

How many possible functions are there? 21¢

What is the sample complexity for PAC learning!?
dlog?21 + log(1/0)

€

Ma(€,0) S

%



WHAIT ABOUT INFINITE CLASSES!

T the size of the class Is infinite, then the previous bound Is useless.

What quantity should replace log | # |?

et us think about the behavior of the function on our training dataset:

[Mz(5) = 1(f(x)), ... J(x,)) - f € F}

This is all

bossible labeling that the training

HOINtS coulc

have accorc

ing to F



WHAIT ABOUT INFINITE CLASSES!

et us think about the behavior of the function on our training dataset:

[1z(S) = {(f(x)), ... f(x,) : f € F }

Define the maximum possible labelings over all training sets of size m
[1g(m) = maxg. g, [ 115(5) ]

Growth function

What is an upper bound on [1(m)? 2™

But for many &, this is actually much smaller

9



(SOME) INFINITE CLASSES ARE PAC LEARNABLE BY ERM

Consider an infinite function class &

Theorem:

~or any ERM fS over training set § of size m, with probability 1 — o,

log(|I1g(2m)|/6) }
——— |

R(fs) < [

Note that if [15(m) = 2™ then this is vacuous!

We will not cover the proof in class since it Is a bit involved
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EXAMPLE - THRESHOLDS £ ) = {1 fx>a

—1 otherwise.

1
 —
T R CLLCECEE T E PP ------------------------------ > X
a
___ 5

Consider a dataset of three points x; < x, < X3

How are the possible labelings with the class of thresholds?



EXAMPLE - INTERVALS £ = {1 fa<x<b

—1 otherwise.

Consider a dataset of three points x; < x, < X3

How are the possible labelings with the class of intervals?



GENERAL BOUNDS -VC DIMENSION

There Is a notion of complexity called Vapnik-Chervonenkis (VC) dimension that
bounds 11g(m)

Definition (shattering):
A set S of inputs is said to be shattered by function class F if |I15(S) | = 2! that

s, # can realize all possible labelings for the set of points in .
Definition (VC dimension):

VC dimension of a function class & (VC(&)) is the size of the largest set § that
can be shattered by &.



GENERAL BOUNDS -VC DIMENSION

Definition (VC dimension):

VC dimension of a function class & (VC(&)) is the size of the largest set § that
can be shattered by &.

To show that a function class has VC(&) = d, we must show that,
° Thereis a set § of d points that is shattered by &#
° Thereisnoset S of d+ 1 points that is shattered by &




EXAMPLE - THRESHOLDS £ ) = {1 fx>a

—1 otherwise.

 —

T R CLLCECEE T E PP ------------------------------ > X
a

___ 5

What is the VC dimension of the class of thresholds?



EXAMPLE - INTERVALS £ = {1 fa<x<b

—1 otherwise.

S
i R T > X
—1 E : —1

What is the VC dimension of the class of intervals?



CONNECTION -VC DIMENSION & GROW IH FUNCTION
Theorem (Sauer’s Lemma):
Let d = VC(F), then

o [Ig(m) =2"form < d

o [lg(m) = O(m%) form > d

Theorem:

For any ERM fS over training set S of size m > d, with probability 1 — 0,
d4eemt + log(1/9)

m

R(fs) S



EXAMPLE - RECTANGI ES ) = {1 f inside the rectangle

—1 otherwise.

What is the VC dimension of the class of rectangles!?



EXAMPLE - LINEAR CLASSIFIERS fu(x) = sgn(w 'x)

What is the VC dimension of the class of linear classifiers?



CONCLUSION

Theorem:

For any ERM fS over training set § of size m > d, with probability 1 — 0,
d + log(1/9)

m

R(fs) S

o quantify how many samples we need to learn a particular function class, we can
use the VC dimension as a complexity measure
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