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OUTLINE - TODAY

Survey Overview
What about generalization?

Probably Approximately Correct (PAC) learning

Finite Function Classes are PAC learnable



Training dataset 

Function class , loss function 

Empirical Risk Minimizer : 

! = {(x1, y1), (x2, y2), …, (xm, ym)}
ℱ ℓ

̂f = arg min
f∈ℱ

1
m

m

∑
i=1

ℓ( f(xi), yi)

R̂( f )
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SUPERVISED LEARNING - SO FAR

8

We have looked at various methods to find the ERM
Is this good enough for learning?
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MEMORIZATION

Memorizer predictor f%&%( ⋅ )

f%&%(x) = {yi if ∃(xi, yi) ∈ !, x = xi,
0 otherwise.

This gets 0 training loss , so it is an ERM.

But is it a good predictor?

R̂( f%&%) = 0
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GENERALIZATION

We want the predictor to perform well not just on the training data but on 
examples it will see in the future.

Recall how we formalized this: 
Training dataset is drawn independently and identically from some unknown but 
fixed distribution 

loss on future examples = loss over the distribution
)

R( ̂f ) = *(x,y)∼) [ℓ( ̂f(x), y)]
We ideally want to minimize true risk  and not just empirical risk  R R̂
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GENERALIZATION

loss on future examples = loss over the distribution

R( ̂f ) = *(x,y)∼) [ℓ( ̂f(x), y)]

R( ̂f ) = (R( ̂f ) − R̂( ̂f ))
generalization gap

+ R̂( ̂f )

In this lecture, we will bound this generalization gap

ERM can 
guarantee that 

this is small

This will depend on the size of the training set 
and the complexity of the function class ℱ

We don’t have access to the true risk, we can 
only see a training set
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LET US FORMALIZE THIS!

Let us work in the classification setting and assume that there is a perfect classifier 
(realizable learning model)

We want to show that  is small for any empirical risk minimizer  R( ̂f ) ̂f

Challenge 1: Can we find exactly  or get exactly 0 error?

Challenge 2: Can we find a good predictor for all datasets?

f*

∃f* ∈ ℱ such that R( f*) = 0

 since R̂( ̂f ) = 0 R̂( f*) = 0
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EXAMPLE - THRESHOLDS

f*
a

1

−1

x

fa(x) = {1  if x ≥ a
−1  otherwise.

One dimensional half space or thresholds
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EXAMPLE - ZERO RISK?

f*
x

fa(x) = {1  if x ≥ a
−1  otherwise.

⏟Error region

From finite samples, it is hard to exactly find  to get 0 errorf*

f*

Suppose the data is uniformly distributed on this line, and you observe the following:
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EXAMPLE - ALWAYS?

f*
x

fa(x) = {1  if x ≥ a
−1  otherwise.

Would not know where to put the threshold, however this is a very unlikely sample

f*

Suppose the data is uniformly distributed on this line, and you observe the following:
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PROBABLY APPROXIMATELY CORRECT (PAC) LEARNING

Introduced by Leslie Valiant in 1984, captures the notion of finding approximately good 
predictors with high probability

Definition: 

A function class  is PAC learnable if there exists an algorithm  and a function 
 with the following property: 

for every labelling function , for every distribution  on feature space , and for all 
, if  is given access to a training dataset  of size  where the 

features are drawn from  and labels are according to ,  then with probability  (over 

the choice of the training dataset),  outputs a predictor  such that 

ℱ .
mℱ : (0,1)2 → ℕ

f ∈ ℱ ) 1
ϵ, δ ∈ (0,1) . S m ≥ mℱ(ϵ, δ)

) f 1 − δ
. ̂f Pr

x∼) [ ̂f(x) ≠ f(x)] ≤ ϵ .

Error parameter ϵ
Confidence parameter δ
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PROBABLY APPROXIMATELY CORRECT (PAC) LEARNING

Function  captures the sample complexity of learningmℱ : (0,1)2 → ℕ

Definition: 

A function class  is PAC learnable if there exists an algorithm  and a function 
 with the following property: 

for every labelling function , for every distribution  on feature space , and for all 
, if  is given access to a training dataset  of size  where the 

features are drawn from  and labels are according to ,  then with probability  (over 

the choice of the training dataset),  outputs a predictor  such that 

ℱ .
mℱ : (0,1)2 → ℕ

f ∈ ℱ ) 1
ϵ, δ ∈ (0,1) . S m ≥ mℱ(ϵ, δ)

) f 1 − δ
. ̂f Pr

x∼) [ ̂f(x) ≠ f(x)] ≤ ϵ .

Depends on complexity of ℱ
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EXAMPLE - NOT PAC LEARNABLE

Class of all possible predictors from  is not PAC learnable, for any 
dataset of size  we would have only seen the labels on those  points.

The true function could take any value outside! 

1 → {−1,1}
m m

We cannot possibly guarantee small generalization error!
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EXAMPLE - THRESHOLDS

f*
a

1

−1

x

fa(x) = {1  if x ≥ a
−1  otherwise.

One dimensional half space or thresholds
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EXAMPLE - PAC LEARNABLE

f*
x

fa(x) = {1  if x ≥ a
−1  otherwise.

⏟Region of error

As we see more and more samples, the mass of the region of error will shrink

In the next lecture we will quantify how many samples we will need for this

a*
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GENERAL - FINITE CLASSES ARE PAC LEARNABLE

Observe that it depends on the size of  which is a natural notion of complexity of ℱ ℱ

Consider a finite function class 

Theorem: 

Every finite function class  is PAC learnable with sample complexity

ℱ = {f1, …, f|ℱ|}

ℱ

mℱ(ϵ, δ) ≤ ⌈ log( |ℱ | /δ)
ϵ ⌉ .
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GENERAL - FINITE CLASSES ARE PAC LEARNABLE BY ERM

Consider a finite function class 

Theorem: 

Every finite function class  is PAC learnable with sample complexity

where the algorithm  is any empirical risk minimization algorithm.

ℱ = {f1, …, f|ℱ|}

ℱ

mℱ(ϵ, δ) ≤ ⌈ log( |ℱ | /δ)
ϵ ⌉

.
Proof on the iPad
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GENERAL - FINITE CLASSES ARE PAC LEARNABLE BY ERM

Another way to state this is:

Theorem: 

For any ERM  evaluated over training set of size , with probability ,̂f m 1 − δ

R( ̂fS) ≤ log( |ℱ | /δ)
m

.
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SUMMARY

We studied the notion of PAC learning where we allowed approximately 
correct learning with high probability

We proved that finite classes are PAC learnable using ERM

Next class: How do we handle infinite classes?


