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OUTLINE - TODAY

Logistics
Kernels (quick summary)
Convexity (recap)
Gradient Descent
Proof of Convergence



3

Show that the solution to your problem lies in the span of the 

training points, 

Rewrite the algorithm and the predictor so that all training or test 
points are only accessed in inner-products ( ) with other points

Replace  everywhere for a valid kernel 

w =
m

∑
i=1

αixi

x⊤
i xj

x⊤
i xj → k(xi, xj) k

POWER OF KERNELS

There is a general theorem called 
the Representer Theorem which 

tells us when this is true

Super Powerful!
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How do we choose a good feature map ?

Feature map is the same for all inputs!

ϕ

CHALLENGE

Can learn the feature map itself  deep learning!→
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CONVEX OPTIMIZATION

 

Here  is a convex set and  is a convex function

min
w

F(w)
⏟

objective
such that w ∈ 𝒞

constraint
𝒞 ⊆ ℝd F : ℝd → ℝ

It is a powerful sub-class of optimization problems
allows for efficient global solutions
beautiful mathematical theory that provides guarantees
very well researched with lots of available libraries 
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Convex Set: For all  and ,w, w′￼ ∈ 𝒞 α ∈ [0,1]
αw + (1 − α)w′￼ ∈ 𝒞 .

CONVEXITY - RECAP

w

w′￼

w w′￼

Convex Non-convex



7

Convex Function: For all  and ,w, w′￼ ∈ ℝd α ∈ [0,1]
F (αw + (1 − α)w′￼) ≤ αF(w) + (1 − α)F(w′￼)

CONVEXITY - RECAP

F

w w′￼αw + (1 − α)w′￼

F (αw + (1 − α)w′￼)

αF(w) + (1 − α)F(w′￼)
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 is convex and differentiable, then for all F w, w′￼ ∈ ℝd

F(w′￼) ≥ F(w) + ∇F(w)⊤(w′￼− w)

CONVEXITY - FIRST ORDER CHARACTERIZATION

F(w′￼)

F(w)

F(w) + ∇F(w)⊤(w′￼− w)



 is convex and differentiable, any  that satisfies  is a global 
minimum of .
F w ∇F(w) = 0

F

CONVEXITY - FIRST ORDER OPTIMALITY

Convex Non-convex
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 is convex and twice-differentiable, then for all 

Hessian is positive semi-definite (PSD)

F w ∈ ℝd

∇2F(w) ⪰ 0

CONVEXITY - SECOND ORDER CHARACTERIZATION

F(
w

)
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-smooth Function: For all ,L w, w′￼ ∈ ℝd

F(w′￼) ≤ F(w) + ∇F(w)⊤(w′￼− w) +
L
2

∥w − w′￼∥2
2

CONVEXITY - SMOOTHNESS

F(w)

F(w) + ∇F(w)⊤(w′￼− w) +
L
2

∥w − w′￼∥2
2
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-strongly Convex Function: For all ,μ w, w′￼ ∈ ℝd

F(w′￼) ≥ F(w) + ∇F(w)⊤(w′￼− w) +
μ
2

∥w − w′￼∥2
2

CONVEXITY - STRONG CONVEXITY

F(w)

F(w) + ∇F(w)⊤(w′￼− w) +
μ
2

∥w − w′￼∥2
2

F(w) + ∇F(w)⊤(w′￼− w)

F(w′￼)
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-norm: 

Logistic: 

Mean of convex functions: for convex functions 

ℓ2
F(w) = ∥x∥2

2 = x⊤x

F(w; x, y) = log(1 + exp(−yw⊤x))

F1, …, Fm

F(w) =
1
m

m

∑
i=1

Fi(w)

CONVEX FUNCTIONS - EXAMPLES
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GRADIENT DESCENT - MOTIVATION

Move in the opposite direction of the gradient to decrease the function

F(w1) F(w1) + ∇F(w1)⊤(w′￼− w)

F(w2)

F(wT) F(w*) global minimum
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GRADIENT DESCENT - ALGORITHM

 is the learning rate or step size which governs how much to moveηt

Can stop when gradient becomes very small ∥∇F(wt)∥2 ≤ ϵ
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GRADIENT DESCENT - INTERPRETATION

Consider -smooth convex function 

We could locally minimize the quadratic

This gives 

L F

min
w′￼

F(w) + ∇F(w)⊤(w′￼− w) +
L
2

∥w′￼− w∥2
2

w′￼ = w −
1
L

∇F(w)

F(w)

F(w) + ∇F(w)⊤(w′￼− w) +
L
2

∥w − w′￼∥2
2

F(w)

Gradient step with step size 
1
L
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GRADIENT DESCENT - STEP SIZE

Too large Too small Just right
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GRADIENT DESCENT - CONVERGENCE

Theorem: Suppose we run GD on -smooth function  with fixed 
constant learning rate  at all time. Then at any time , we have

L F
ηt = 1/L τ

F(wτ+1) − F(w*) ≤
L∥w1 − w*∥2

2

2τ
 is the optimalw*
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PROOF - OVERVIEW

Step 1: Upper bound the difference between function value at the next 
iterate and the current iterate for every time t

F(wt+1) − F(wt) ≤ −
L
2

∥wt+1 − wt∥2

 is non-decreasing, we are reducing the function valueF(wt)



20

PROOF - OVERVIEW

Step 2: Upper bound the difference between function value at the next 
iterate and the global minimum for every time t

F(wt+1) − F(w*) ≤
L
2 (∥wt − w*∥2

2 − ∥wt+1 − w*∥2
2)

 is non-decreasing, we are getting closer to the optimal∥wt − w*∥2
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PROOF - OVERVIEW

Step 3: Use the previous to upper bound , that is, the 
difference after  iterates and the global minimum.

F(wτ+1) − F(w*)
τ

F(wτ+1) − F(w*) ≤
L∥w1 − w*∥2

2

2τ
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PROOF - STEP 1

Step 1: Upper bound the difference between function value at the next 
iterate and the current iterate for every time t

F(wt+1) − F(wt) ≤ −
L
2

∥wt+1 − wt∥2

 is non-decreasing, we are reducing the function valueF(wt)

Important properties:

F(w′￼) ≥ F(w) + ∇F(w)⊤(w′￼− w)
F(w′￼) ≤ F(w) + ∇F(w)⊤(w′￼− w) +

L
2

∥w − w′￼∥2
2
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PROOF - STEP 2

Step 2: Upper bound the difference between function value at the next 
iterate and the global minimum for every time t

F(wt+1) − F(w*) ≤
L
2 (∥wt − w*∥2

2 − ∥wt+1 − w*∥2
2)

 is non-decreasing, we are getting closer to the optimal∥wt − w*∥2

Important properties:

F(w′￼) ≥ F(w) + ∇F(w)⊤(w′￼− w)
F(w′￼) ≤ F(w) + ∇F(w)⊤(w′￼− w) +

L
2

∥w − w′￼∥2
2
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GRADIENT DESCENT - CONVERGENCE

Theorem: Suppose we run GD on -smooth -strongly convex function 
 with fixed constant learning rate  at all time. Then at any time 
, we have

L μ
F ηt = 1/L
τ

∥wτ+1 − w*∥2
2 ≤ (1 −

μ
L )

τ

∥w1 − w*∥2
2

 is the optimalw*
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GRADIENT DESCENT - BENEFITS/DRAWBACKS

Requires differentiability, many problems are not convex

Easy to implement, requires only local information, very fast for strongly 
convex problems
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GRADIENT DESCENT - RECIPE

Write your problem as loss minimization

As long as your loss is differentiable, run gradient descent

Tune learning rate/step size to avoid divergence


