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OUTLINE

% Logistics

- [ODAY

&k Kernels (quick summary)

sk Convexity (recap)

2% Gradient

Descent

%k Proof of Convergence



POWER OF KERNELS TE

*k Show that the solution to your problem lies in the span of the

m
o . o Ihere is a general theorem called
trammg DOINTS, W = A X; the Representer [heorem which
=1

tells us when this is true

*k Rewrite the algorithm and the predictor so that all training or test

boINts are only accessed In INner-products (xiij) with other points

T :
* Replace x;' x; — k(x;, x;) everywhere for a valid kernel k

Super Powerful




CHALLENGE

* How do we choose a good feature map ¢@?

2% Feature map Is the same for all inputs!

Can learn the feature map itself — ¢

cC

O learning!




CONVEX OPTIMIZATION

min F(w)
w
objective
such that we®E
constraint

Here € C R? is a convex set and F : R — R is a convex function

[t 1s a powerful sub-class of optimization problems

>k allows for efficient global solutions

sk beautiful mathematical theory that provides guarantees
% very well researched with lots of avallable libraries
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CONVEXITY - RECAP

Convex Set: Forall w,w’ € € and a € [0,1],
ow+ (1l —aw' € €.

Convex Non-convex



CONVEXITY - RECAP

Convex Function: For all w,w’ € R% and a € [0,1],
Faw+ (1 —aw) < aF(w)+ (1 — a)F(w)

F

aF(w) + (1 — a)F(w")

F ((xw + (1 — a)w’)

w  aw+ (1 —a)w’ w'

v



CONVEXITY - FIRST ORDER CHARACTERIZATION

F Is convex anc

C

fferentiable, then for all w,

w' e R4

F(w") > F(w) + VF(w)

F(w)

W= w)

F(w’)

Fw)+ VEW)'(w' — w)



CONVEXITY - FIRST ORDER OPTIMALITY

F'is convex and differentiable, any w that satisfies V F(w) = 0 is a global

Mminimum of F.

\ local

minimum

global / \Iocal global / \Iocal

minimum minimum

minimum minimum

Convex Non-convex



CONVEXITY - SECOND ORDER CHARACTERIZATION

F 1s convex and twice-differentiable, then for all w € R4
V2F(w) > 0

Hesslan Is positive semi-definite (PSD)

Negative curvature  No curvature Positive curvature

F(w)



CONVEXITY - SMOOTHNESS

L-smooth Function: For all w, w’' & R4

L
Fw) < Fw)+ VFW)'(w' — w) + EHW — W’H%

T , L / 2
Fw)+ VFEWw) (w' —w) +5HW — w3,




CONVEXITY - STRONG CONVEXITY

u-strongly Convex Function: For all w, w’ & RY
Fw) > Fw)+ VFW)'(w —w) + %Hw — W’H%




CONVEX FUNCTIONS - EXAMPLES

>k £5-norm:
Fw) = |lx|l; = xx
% Logistic:
F(w;x,y) = log(l + exp(—yw ' x))
> Mean of convex functions: for convex functions Fy, ..., F,,

1 m
Fw) =— Z} Fi(w)



GRADIENT DESCENT - MOTIVATION

Move In the o

hosIte G

rection of the gradient to decrease the function

F(wy) + VF(WI)T(W’ —w)

_ F(w.) global minimum




GRADIENT DESCENT - ALGORITHM

Algorithm 1: Gradient Descent (GD)

Initialize w; € R4
whilet=1,2,...,7T do

Update w1 = wy — ¢ VF (wy)
end

Can stop when gradient becomes very small |[|VF(w)||, < €

1, 1S the learning rate or step size which governs how much to move




GRADIENT DESCENT - INTERPRETATION

' ] ' L
Consider L-smooth convex function F FO) 4 VFOn 08" = )+ [ = w1l

We could locally minimize the quadratic

/

w

L
min F(w) + VFw)' (W' — w) + EHW' — W”%

|
This gives w' = w — T V F(w)

1
Gradient step with step size —

L

|6



GRADIENT DESCENT - STEP SIZE

Joo large

L /q\

Too small

. \ \U//l/u |

Just right




GRADIENT DESCENT - CONVERGENCE

Algorithm 1: Gradient Descent (GD)

Initialize w; € R4
whilet=1,2,...,7 do

Update w1 = wy — e VF (wy)
end

Theorem: Suppose we run GD on L-smooth function F with fixec

constant learning rate n, = 1/L at all time. Then at any time 7, we have

2
LHW1 - W*”z Wx 1S the optimal

F(WT+1) — F(W*) S
2T



PROOF - OVERVIEW

Step |: Up

her bounc

terate anc

F(w,) 1s non-c

the difference between function value at the next

the current Iterate for every time ¢

F(Wt+1) — F(Wt) < — EHWHI o Wtuz

ecreasing, we are reducing the function value



PROOF - OVERVIEW

Step 2: Up

her bounc

terate anc

the difference between function value at the next

the global minimum for every time ¢

F — F(wy) < L — wy||2 — — wy||?
(Wt-|-1) (W*) — (Hwt W*Hz Hwt+1 W*Hz)

2

|w, — wx||, is non-decreasing, we are getting closer to the optimal
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PROOF - OVERVIEW

Step 3: Use the previous to u

C

fference after 7 iterates anc

Fw, ) — F(ws) <

D

her bounc

F(w_, ) — F(ws), that is, the

the global minimum.

2|

)
LHW1 — W*Hz

2T



PROOF - STEP |

Step |: Up

her bounc

terate anc

F(w,) 1s non-c

the difference between function value at the next

the current rterate for every time ¢

FWyy) = Flw,) < — EHW;‘H — W

ecreasing, we are reducing the function value

Important properties:

Fw") > F(w)+ VFw)' (W' —w)

L
Fw) < Fw)+ VFW) (W' — w) + EHW — w’H%
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PROOF - STEP 2

Step 2: Up

her bounc

terate anc

the difference between function value at the next

the global minimum for every time ¢

F — F(ws) < L — wa||Z — — wy|3
(Wz-|-1) (W*) — (sz W*Hz Hwt+1 W*Hz)

2

|w, — wx||, is non-decreasing, we are getting closer to the optimal

Important properties:

Fw") > F(w)+ VFw)' (W' —w)

L
Fw) < Fw)+ VFW) (W' — w) + EHW — w’H%
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GRADIENT DESCENT - CONVERGENCE

Algorithm 1: Gradient Descent (GD)

Initialize w; € R4
whilet=1,2,...,7 do

Update w1 = wy — e VF (wy)
end

Theorem: Suppose we run GD on L-smooth u-strongly convex function

F with fixed constant learning rate #, = 1/L at all time. Then at any time

T, We have

T
W1 — W*”% = (1 - %) lwy — W*H% We Is the optima
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GRADIENT DESCENT - BENEFITS/DRAVWBACKS

Algorithm 1: Gradient Descent (GD)

Initialize w; € R®
whilet=1,2,...,7T do

Update w1 = wy — e VF (wy)
end

Fasy to Implement, requires only local information, very fast for strongly

convex problems

Requires differentiability, many problems are not convex
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GRADIENT DESCENT

- RECIPE

*k Write your problem as loss minimization

%k As long as your loss Is differentiable, run grac

% Tune learning rate/ste

ent C

D size to avold divergence

26
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