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1 Kernels

A common problem we keep stumbling upon in our lectures is: there may not be a linear classifier
or regressor that explains our model? In this lecture, we will address this question (to some degree)
by looking at more expressive functions.

1.1 Feature Maps

One way to make linear functions non-linear is by applying a non-linear feature map on the input
features x. More formally, you can take your input x ∈ Rd and map to ϕ(x) ∈ RD where ϕ : Rd →
RD is a feature map. Usually D >> d, sometimes even infinite dimensional.

For example, consider the example we looked at in Lecture 2 (see Figure 1). This is clearly not
linearly separable. But consider the following feature map ϕ(x) = [x1, x2, x

2
1, x

2
2]
⊤. Now observe

that under this feature map, we can linearly separate the data using w = [0, 0, 1, 1]⊤ and b = −r2.

Figure 1: Example of non-linearly separable data in 2 dimensions.
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Let us consider another common example, polynomial feature map of degree 2:

ϕ(x) =



1
x1
...
xd
x21

x1x2
...
x2d


.

This contains all monomials of degree at most 2. Imagine a similar map of degree r. The number
of features grows as D ≈ dr. On one hand, it increases the ability for the model to express
more complex functions, but on the other hand, it makes the algorithms slower since D can be
prohibitively large.

In this lecture, we will look at the kernel trick that allows us to use large feature maps without
paying heavy computational costs.

1.2 Recap: SVM Dual

Recall the dual of the soft-SVM problem from last lecture:

maximize over α − 1

2

m∑
i=1

m∑
j=1

αiαjyiyj(x
⊤
i xj) +

m∑
i=1

αi

such that
m∑
i=1

αiyi = 0

∀i ∈ [m], 0 ≤ αi ≤ C.

If we wish to run this on the feature map ϕ, we can easily modify this to be:

maximize over α − 1

2

m∑
i=1

m∑
j=1

αiαjyiyj(ϕ(xi)
⊤ϕ(xj)) +

m∑
i=1

αi

such that

m∑
i=1

αiyi = 0

∀i ∈ [m], 0 ≤ αi ≤ C.

Observe that ϕ appears only as inner (dot) products: ϕ(xi)
⊤ϕ(xj) for i, j ∈ [m]. In fact, even to

make a prediction, we need to compute

w⊤ϕ(x) + b =
m∑
i=1

αiyiϕ(xi)
⊤ϕ(x) + b

which also depends on only inner products between feature vectors. Naively computing this inner
product would require O(D) time, but in some cases we can actually do this much faster.
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Let us recall the polynomial feature map ϕ of degree 2. We have

ϕ(x)⊤ϕ(x′) = 1 +
∑
i∈[d]

xix
′
i +

∑
i,j∈[d]

xixjx
′
ix

′
j = 1 + x⊤x′ + (x⊤x′)2.

Observe that instead of computing the inner product between two vectors of dimensionD = (d+1)2,
we only need inner products between two d-dimensional vectors. In fact, this extends to any degree
r. This is known as the kernel trick! Here computing inner products can be done exponentially
faster than actually computing them!

1.3 Kernel Function

A kernel is a function k : X × X → R that satisfies:

k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩

for some feature map ϕ that maps X to some inner product space V. For given data x1, . . . , xm,
we can define the corresponding kernel matrix K such that Kij = k(xi, xj). For a kernel to be
valid, K must be positive semi-definite (all eigenvalues are non-negative) and symmetric. We can
directly think about kernels now and not worry about the feature map.

Let us walk through some examples of kernel functions:

• Linear: k(x, x′) = x⊤x′. This is the same as using a linear classifier.

• Polynomial: k(x, x′) = (1 + x⊤x′)r for degree r. Note that this is slightly different from
the kernel from our example and leads to a slightly different feature map, but is the more
commonly used one.

• Gaussian or radial basis function (RBF): s for parameter σ > 0. This kernel corresponds
to a feature map that is infinite dimensional. This is the most popular kernel function, and
a uniform approximator, that is, it can approximate any function.

• Other: There are kernels over strings, sets, trees, graphs, etc.

One way to think of a kernel is that it is a similarity map. Higher the value of the kernel function
on two points, the more similar they are. Check to see if this intuition holds for the above kernels.

1.4 Kernel Machines

Now that we are equipped with the kernel trick, we can use the idea to “kernalize”algorithms. The
key properties are that the algorithm accesses training points using inner products and the solution
is a in the span of the training points. Let us look at some examples:
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Kernel SVM. We can rewrite the optimization from Section 2 using the kernel k corresponding
to the feature map ϕ,

maximize over α − 1

2

m∑
i=1

m∑
j=1

αiαjyiyjk(xi, xj) +

m∑
i=1

αi

such that
m∑
i=1

αiyi = 0

∀i ∈ [m], 0 ≤ αi ≤ C.

We can then make the prediction as

sign
(
w⊤ϕ(x) + b

)
= sign

(
m∑
i=1

αiyik(xi, x) + b

)
.

Note that b can also be computed using only inner products since for any support vector i ∈ SV ,

b = yi − w⊤ϕ(xi) = yi −
m∑
j=1

αiyik(xj , xi).

Kernel Perceptron. Recall the Perceptron algorithm:

Algorithm 1: Perceptron

Initialize w1 = 0 ∈ Rd

for t = 1, 2, . . . do
if ∃i ∈ {1, . . . ,m} s.t. yi ̸= sign

(
w⊤
t xi
)
then update wt+1 = wt + yixi

else output wt

end

Note that the updates are always in the space spanned by {x1, . . . , xm} therefore we have that the
optimal w∗ =

∑m
i=1 αixi for some α ∈ Rm. Using this, we can rewrite the algorithm in terms of α.

Work this out for yourself once more.

Algorithm 2: Perceptron - Dual

Initialize α1 = 0 ∈ Rd

for t = 1, 2, . . . do

if ∃i ∈ {1, . . . ,m} s.t. yi ̸= sign
(∑m

j=1 αtjx
⊤
j xi

)
then update α(t+1)i = αti + yi

else output αt

end

Since this only depends on inner products, we can kernalize it straightforwardly.

Kernel Ridge Regression. Let us look at ℓ2 regularized linear regression

minimize over w
1

m

m∑
i=1

(
yi − w⊤xi

)2
+ λ∥w∥22 =

1

m
∥Y −Xw∥22 + λ∥w∥22.
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We want to show that an optimal w∗ can be expressed as a linear combination of the input data
points. Suppose this is not true, that is, there is an optimal w∗ = w + u where w belongs to the
span of x1, . . . , xm and u lies in the orthogonal subspace. Then we have,

w⊤
∗ xi = w⊤xi + u⊤xi = w⊤xi.

The prediction remains unchanged, so ∥Y −Xw∗∥22 = ∥Y −Xw∥22. However, ∥w∗∥2 = ∥w∥2 + ∥u∥2
implying ∥w∥2 < ∥w∗∥2. This contradicts the fact that w∗ is optimal. Therefore, we can assume
u = 0. This gives us that

w∗ =
m∑
i=1

αixi = X⊤α.

Using this, we can modify our problem as:

minimize over α
1

m
∥Y −XX⊤α∥22 + λα⊤XX⊤α.

Observe that to kernalize, we can replace XX⊤ by K to get

minimize over α
1

m
∥Y −Kα∥22 + λα⊤Kα.

The optimal α = (K + λmI)−1Y . To predict on input x, we can construct a vector kx =
[k(x, x1) . . . k(x, xm)]⊤, and output k⊤x α. Try to check why this is the correct predictor.

2 Demo

Here’s a wonderful demo made by folks at Cornell to try out various classification algorithms we
have looked at (and some more) and test your understanding for each of them!
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