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1 Support Vector Machines

In this lecture, we will go back to the binary classification paradigm with the Perceptron algorithm
that we studied in Lecture 2. Recall that the Perceptron algorithm guaranteed to find a hyperplane
that separates the data as long as one exists. In fact, since we assumed separation with margin,
there are infinitely many hyperplanes that separate the data, and the Perceptron may find any one
of these. In particular, Perceptron algroithm did not provide any guarantees on the margin of the
hyperplane found, even though we assumed that the training dataset had margin γ with respect
to the true separator. In this lecture, we will look at a machine learning method that finds the
hyperplane with the maximum margin.

Note: In Homework 1, we saw a simple modification of the Perceptron to the Margin Perceptron
which guaranteed an approximate margin of γ/3. Here we will guarantee exact maximum margin
of γ.

1.1 Setting

We will study binary classification with linear classifiers,

• Input space X = Rd

• Label space Y = {−1, 1}1

• Hypothesis class F := {x 7→ sign(w⊤x+b) | w ∈ Rd, b ∈ R}2 where sign(a) =

{
1 if a ≥ 0,

−1 otherwise.
.

• Loss function ℓ(y, y) =

{
0 if y = y,

1 otherwise.
1In the last lecture we used {0, 1}. For technical reasons, it will be easier to use {−1, 1}.
2Here we will keep the bias term, it will become clear why this is important as we go through the analysis.
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Margin. Recall that the margin of a hyperplane w⊤x + b = 0 is the minimum distance of any
point in the dataset to the hyperplane. Recall in Homework 0, you computed the distance of point

x to the hyperplane to be |w⊤x+b|
∥w∥2 . This gives the margin as,

γ(w, b) = min
i∈[m]

|w⊤xi + b|
∥w∥2

.

1.2 Max-margin classifier: separable case

Let us assume that the data is separable by a hyperplane w⊤
∗ x + b∗ = 0. The goal here is to find

the classifier that achieves maximum margin. We can formulate this as the following optimization
problem:

maximize over w, b γ(w, b)︸ ︷︷ ︸
margin

such that ∀i ∈ [m], yi(w
⊤xi + b) ≥ 0︸ ︷︷ ︸

(w,b) is a separating hyperplane

.

This gives us,

maximize over w, b
1

∥w∥2
min
i∈[m]

|w⊤xi + b|︸ ︷︷ ︸
margin

such that ∀i ∈ [m], yi(w
⊤xi + b) ≥ 0︸ ︷︷ ︸

(w,b) is a separating hyperplane

.

Note that in the above problem, if (w, b) is a solution then (αw,αb) is also a solution. This is
because the scale of the hyperplane does not affect the prediction (we are using only the sign of
the value). To make this solution unique, we can fix the scale of this problem. One way to do this
is to set the following constraint,

min
i∈[m]

|w⊤xi + b| = 1.

Substituting this constraint in our optimization gives us,

maximize over w, b
1

∥w∥2
such that ∀i ∈ [m], yi(w

⊤xi + b) ≥ 0

min
i∈[m]

|w⊤xi + b| = 1.

This is equivalent to,

minimize over w, b
1

2
∥w∥22

such that ∀i ∈ [m], yi(w
⊤xi + b) ≥ 0

min
i∈[m]

|w⊤xi + b| = 1.
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This problem is a quadratic optimization problem (we saw before) but it is non-convex because of
the last constraint.3 There is a clever way to rewrite this to make it convex.

minimize over w, b
1

2
∥w∥22

such that ∀i ∈ [m], yi(w
⊤xi + b) ≥ 1.

Now this is a convex objective with convex constraints making this problem a convex quadratic
optimization problem. It’s a good exercise to check why these are equivalent. Hint: Try to prove
using contradiction.

Dual formulation. It is often helpful to view the constrained optimization in its dual form. The
constrained optimization problem for the SVM satisfies strong duality, implies that the solution to
the primal is the same as the dual. Now let us write the dual formulation. First we will define the
Lagrangian

L(w, b, α) = 1

2
∥w∥22 +

m∑
i=1

αi(1− yi(w
⊤xi + b))

where αi ≥ 0 are the dual variables. Now, the Lagrange (dual) function is

D(α) = min
w,b

L(w, b, α).

To get a solution for the above, since it is unconstrained, we can take the derivative with respect
to w and b and set them to 0.

∇wL(w, b, α) = w −
m∑
i=1

αiyixi = 0 =⇒ w =
m∑
i=1

αiyixi

∇bL(w, b, α) = −
m∑
i=1

αiyi = 0 =⇒
m∑
i=1

αiyi = 0.

Substituting this back and doing some algebra (you should work this out), we have

D(α) = −1

2

m∑
i=1

m∑
j=1

αiαjyiyj(x
⊤
i xj) +

m∑
i=1

αi.

under the constraint that
∑m

i=1 αiyi = 0. The dual is then

maximize over α − 1

2

m∑
i=1

m∑
j=1

αiαjyiyj(x
⊤
i xj) +

m∑
i=1

αi

such that
m∑
i=1

αiyi = 0

∀i ∈ [m], αi ≥ 0.

3Try to show why this constraint is not convex. Recall that a constraint c(w) = 0 is convex if for any w,w′ such
that c(w) = c(w′) = 0, c(αw+(1−α)w′) = 0 for all α ∈ [0, 1]. This essentially means that the set S = {w : c(w) = 0}
is convex.
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Here we have reduced the problem from solving for m variables instead of d+1 that we had before.
It might seem wasteful if m > d+1. In the next class, we will show that in fact this dual form turns
out to be pretty useful when we are learning a linear function over a feature map ϕ(x) instead of
directly on x, and ϕ can map the d-dimensional input into a much larger space. Also, this is useful
when the number of samples is actually less than d.

Suppose α is the solution we find for the above optimization, then we get

w =

m∑
i=1

αiyixi.

Something interesting to notice here is that w is essentially a linear combination of xi’s (our
datapoints). So it is always in the subspace spanned by x1, . . . , xm. The dual formulation does not
have b, so how do we estimate that? This bring us to an important concept of support vector,
where the name of this approach comes from.

Support Vectors. Any datapoints for which αi > 0, then we call it a support vector. Observe
that w only depends on the support vectors, and is independent of any other datapoints. Let us
call this set SV = {i ∈ [m] : αi > 0}.

By complementary slackness condition in the KKT conditions (from last lecture), we have, for all
i ∈ SV

1− yi(w
⊤xi + b) = 0 =⇒ yi − y2i (w

⊤xi + b) = 0 =⇒ b = yi − w⊤xi.

Now we can estimate b using any of the support vectors. We could also average over them to get
a more stable estimator in case of noise in estimators.

Note that the above also implies that all support vectors are equidistant from the decision bound-
aries, and in fact the points closest to the decision boundary.

1.3 Soft-margin classifier: non-separable case

Suppose the data was not separable, then the constraint in the optimization problem in the previous
section, ∀i ∈ [m], yi(w

⊤xi + b) ≥ 1 would be infeasible. In order to accommodate non-separable
data, one way is to add some slack in the constraints making them soft constraints. In particular,
we can relax the constraints to be,

∀i ∈ [m], yi(w
⊤xi + b) ≥ 1− ξi.

Here ξi ≥ 0 is the slack variable corresponding to datapoint xi. Observe that ξi = 0 implies that
the datapoint i is correctly classified and satisfies the large margin constraint. ξ < 1 implies that
the point is correctly classified but with margin but does not satisfy the large margin constraint.
Lastly, ξi > 1 implies that the point is incorrectly classified.

Given these slack variables, we would ideally want the slack to not be too large. This means that
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we want to assign some cost to having large slack. This gives us the following objective,

minimize over w, b, ξ1, . . . , ξm
1

2
∥w∥22 + C

m∑
i=1

ξi

such that ∀i ∈ [m], yi(w
⊤xi + b) ≥ 1− ξi

∀i ∈ [m], ξi ≥ 0.

Here C ≥ 0 controls how much the slack variables are penalized, and is generally a hyperparameter
of this problem that needs to be tuned. Note that this is still a convex quadratic optimization
problem. We can write the dual formulation of this as well:

maximize over α − 1

2

m∑
i=1

m∑
j=1

αiαjyiyj(x
⊤
i xj) +

m∑
i=1

αi

such that

m∑
i=1

αiyi = 0

∀i ∈ [m], 0 ≤ αi ≤ C.

Exercise: Work out this dual formulation for the soft-margin SVMs.

Loss minimization view. Soft-SVM can alternately be viewed as minimizing a regularized hinge
loss.

ℓhinge(y, y) = max(0, 1− yy).

Then we can view this as,

min
w,b

1

m

m∑
i=1

max(0, 1− yi(w
⊤xi + b)) + λ∥w∥2.

Introducing slack variables, we can rewrite this as.

minimize over w, b, ξ1, . . . , ξm λ∥w∥22 +
1

m

m∑
i=1

ξi

such that ∀i ∈ [m], ξi ≥ 1− yi(w
⊤xi + b)

∀i ∈ [m], ξi ≥ 0.

This is essentially the soft-SVM formulation with C = 1
2λm !
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