
CIS5200: Machine Learning Spring 2023

Lecture 23: Online Learning

Date: April 11, 2023 Author: Surbhi Goel

Acknowledgements. These notes are heavily inspired by notes by Nika Haghtalab (UC Berke-
ley) and Sham Kakade (Harvard).

Disclaimer. These notes have not been subjected to the usual scrutiny reserved for formal pub-
lications. If you notice any typos or errors, please reach out to the author.

1 Online Learning

So far we have looked at setting where we were given a training dataset (labelled or unlabelled)
drawn i.i.d. from some underlying distributionD, and our task was to learn either a useful prediction
function or underlying structure of the data. However, in many settings, such as spam classification,
we need to make decisions in a sequential manner (per email) while being adaptive to the adversary
(spammer) reacting to our prediction (spam classifier). In today’s class we will formalize the model
of online learning, discuss how to measure performance, and look at a few algorithms that can
successfully learn a good predictor in this model of learning.

1.1 Setup

We will focus on binary classification over domain X , as we did for PAC learning. Online learning
will be performed in a sequence of T consecutive rounds, where for each round t = 1, . . . , T :

1. Learner is given an instance xt ∈ X either from the environment or an adversary

2. Learner makes a prediction ŷt ∈ {−1, 1}

3. Learner observes actual label yt ∈ {−1, 1}

4. Learner suffers a loss ℓ(ŷt, yt) (we will assume 0-1 loss for this lecture)

The goal of the learner is to ideally minimize the total loss it suffers over the T rounds. The only way
for this to be possible is if the learner can deduce some information about the future inputs given the
past. So far, we used the i.i.d. assumption (data is drawn i.i.d. from an unknown distribution D)
on the input datapoints to quantify this. However, in online learning we make no such assumption
(worst case setup) in general, we allow the input sequence to be either deterministic, stochastic, or
even adversarially adaptive to the learner. In this setting, the adversary can make us make mistakes
on every round by just choosing yt = −ŷt. Therefore, we need to make additional assumptions.

1

2 Mistake Bound Model

One possible assumption is to assume realizability (like we did in PAC learning), that is, for all t,
yt = f(xt) for some underlying f ∈ F . Now we can hope that the learner makes only few mistakes
for any T even if f and x1, . . . , xT are chosen by the adversary. The worst-case number of mistakes
any learner L makes is known as the mistake bound of L for function class F . More formally,

ML(F) := max
f∈F ,T

x1,...,xT∈X

T∑
t=1

1[f(xt) ̸= ŷt],

where ŷt are the predictions of L on the sequence.

Definition 1 (Online learnability, realizable). We say that a learner L online learns function class
F with mistake bound B iff

ML(F) ≤ B < ∞.

Here we ignore computational efficiency, and only focus on minimizing the mistake bound.

Let us assume that the function class F is finite. Then we can describe a simple learner that has
a finite mistake bound:

Algorithm 1: Halving

Initialize V1 = F
for t = 1, 2, . . . do

Receive xt
Predict ŷt = argmaxy∈{−1,1} |{f ∈ Vt : f(xt) = y}| (in case of tie, predict ŷt = 1)
Receive true label yt
Update Vt+1 = {f ∈ Vt : f(xt) = yt}

end

Theorem 2. Let F be a finite hypothesis class. The Halving algorithm enjoys the mistake bound
MHalving(F) ≤ log(|F|).

Proof. Observe that whenever the algorithm makes an error we have |Vt+1| ≤ |Vt|
2 (hence the name

Halving) since the algorithm predicts according to the majority. Therefore, if M is the total number
of mistakes, we have

1 ≤ |Vt+1| ≤
|F|
2M

=⇒ M ≤ log(|F|).

Recall that in offline learning, all ERMs got the same guarantee (PAC results). However, in this
model, you don’t get that. Consider the following learner:

2

Figure 1: Adversarial sequence for thresholds. Source: Nika Haghtalab’s lecture notes https:

//www.cs.cornell.edu/courses/cs6781/2020sp/lectures/12_online2.pdf.

Algorithm 2: Consistent

Initialize V1 = F
for t = 1, 2, . . . do

Receive xt
Choose any ft ∈ Vt

Predict ŷt = ft(xt)
Receive true label yt
Update Vt+1 = Vt \ {ft}

end

It is not too hard to see that the mistake bound would be |F| − 1. In fact, you can construct a
setting in which this is achieved. Therefore, different ERMs have different performance.

Example: VC Dimension is not enough. Consider the class of linear thresholds (that we have

looked at several times before) defined by a parameter a, fa(x) =

{
1 if x ≥ a

−1 otherwise.
. Recall that

the VC dimension of this class is 1 so O(1/ϵ) samples are enough to learn this class in the realizable
offline setting. In the adversarial online setting, we can show a strategy of the adversary that
guarantees infinite mistakes. The idea is similar to the active learning strategy to improve sample
complexity, we give the adversary point 0 and 1 with labels −1 and 1 respectively. Then we choose
the point 1/2, and give it a random label. Depending on this label, we go to the corresponding half
and repeat this. See Figure 1. This would lead to T/2 mistakes in expectation.

Note: Similar to VC dimension, there is a notion of Littlestone dimension that characterizes online
learnability for infinite function classes. This is out of the scope of this course.

Example: Perceptron The perceptron algorithm has an online version as follows:

3

https://www.cs.cornell.edu/courses/cs6781/2020sp/lectures/12_online2.pdf
https://www.cs.cornell.edu/courses/cs6781/2020sp/lectures/12_online2.pdf

Algorithm 3: Perceptron

Initialize w1 = 0
for t = 1, 2, . . . do

Receive xt
Predict ŷt = sign

(
w⊤
t xt

)
Receive true label yt
if ŷt ̸= yt then Update wt+1 = wt + ytxt
else Update wt+1 = wt

end

You can perform a very similar analysis to the batch perceptron version we looked at before and
show that mistake bound is 1/γ2 under the assumption that ∥w∗∥ = 1 and for all t, ∥xt∥ ≤ 1.

3 Regret

If we do not make the assumption of realizability, it is not always possible to have a mistake bound.
Similar to agnostic PAC learning, here we use a notion of regret, which captures how much the
learner could have improved if it chose a fixed function from the function class in retrospect. More
formally, the regret of a leaner L relative to a function class F on the input sequence is

RegretL(F , T) =
T∑
t=1

ℓ(ŷt, yt)−min
f∈F

T∑
t=1

ℓ(f(xt), yt).

Now the updated goal is to minimize regret, that is, do as well as any function in the function class
could do if it had access to the entire sequence (as in the offline supervised setting). Not that when
we say minimize regret, our goal is to get the regret to be sublinear in T (think log T or

√
T) so

that as T tends to infinity, the average regret (RegretL(F , T)/T) tends to 0.

Definition 3 (Online learnability, general). We say that a learner L online learns function class
F if for any sequence,

lim
T→∞

RegretL(F , T)

T
= 0.

Such a leaner is also called a no-regret learner.

4 Weighted Majority

Working with finite class F , we can generalize the halving algorithm for the non-realizable setting.
Let us view each function f ∈ F as an expert who is assisting with our prediction. Similar to
boosting, we can use a weighted vote of these experts to decide how to predict, and subsequently
update the weights to reflect how good we think each expert is. Here’s the algorithm:

4

Algorithm 4: Weighted Majority

Initialize w1,i = 1 for all i ∈ [n]
for t = 1, 2, . . . do

Receive xt
Predict ŷt = sign (

∑n
i=1wt,ifi(xt))

Receive true label yt
Define Et = {i : fi(xt) ̸= yt} (set of all incorrect experts)
if i ∈ Et then Update wt+1,i = wt,i/2
else Update wt+1,i = wt,i

end

For this algorithm, we can bound the mistakes it makes on the sequence and the optimal number
of mistakes.

Theorem 4. Let F be a finite hypothesis class. Let M be the total number of mistakes made by
the Weighted Majority algorithm, and let M∗ be the number of mistakes made by the best expert,
then

M ≤ 2.41(M∗ + log |F|).

Proof. We denote the size of the set by n = |F|. At each time step t, each expert makes a prediction,
and we assign a weight wt,i to the i-th expert’s prediction. We define the total weight at time step
t as Wt =

∑n
i=1wt,i, and let i∗ be the index of the best expert, who makes the fewest mistakes

throughout the entire process. Note that when we make a mistake, the weight on the correct
experts must have been less than half the total weight, that is,∑

i ̸∈Et

wt,i ≤
WT

2
.

We also have,

Wt+1 =
∑
i∈Et

wt,i

2
+

∑
i ̸∈Et

wt,i

≤

Wt

2
−

∑
i ̸∈Et

wt,i

2

+
∑
i ̸∈Et

wt,i

=
Wt

2
+

1

2

∑
i ̸∈Et

wt,i

≤ 3

4
Wt.

Thus we have,

WT+1 ≤
(
3

4

)M

n.

Now observe that function i∗ makes M∗ mistakes, therefore

WT+1 ≥ wT+1,i∗ =
1

2M∗ .

5

Combining the above, we get
M ≤ 2.41(M∗ + log n).

Question: What happens when we add more good/bad experts (or increase our function class)?

There is an improved randomized version of this algorithm that gets the regret of O(
√
T log |F|).

We will not cover this in class.

6

	Online Learning
	Setup

	Mistake Bound Model
	Regret
	Weighted Majority

