
CIS5200: Machine Learning Spring 2023

Lecture 1: Binary Classification with Linear Predictors

Date: January 17, 2023 Author: Surbhi Goel

Acknowledgements. These notes are heavily inspired by Chapter 9 of Understanding Machine
Learning: From Theory to Algorithms (UML) and Cornell University’s CS 4/5780 — Spring 2022.

Disclaimer. These notes have not been subjected to the usual scrutiny reserved for formal pub-
lications. If you notice any typos or errors, please reach out to the author.

1 Linear Predictors

In this lecture (and the next), we will focus on the hypothesis class of linear predictors. The class
of linear functions is perhaps one the most useful and widely used largely due to the fact that it is
intuitive to understand/interpret, and also computationally efficient to train and evaluate (in most
cases).

2 Binary Classification with Linear Predictors

Let us formalize the setup we will use.

• Input space X = Rd

• Label space Y = {−1, 1}1

• Hypothesis class F := {x 7→ sign(w⊤x+b) | w ∈ Rd, b ∈ R} where sign(a) =

{
1 if a ≥ 0,

−1 otherwise.

Here w is often referred to as the weight vector and b as the bias. We will use w and b to
index the function class.

• Loss function ℓ(ŷ, y) =

{
0 if ŷ = y,

1 otherwise.

Note that this is the 0/1 loss which gives a loss of 1 for each incorrect prediction, and 0
otherwise.

Remark. Without loss of generality, we can assume that the bias term b = 0. This is because, a
halfspace with bias, can be transformed into a halfspace without bias using the following mapping

1In the last lecture we used {0, 1}. For technical reasons, it will be easier to use {−1, 1}.

1

https://www.cs.cornell.edu/courses/cs4780/2022sp/notes/LectureNotes06.html

Figure 1: Linear separator or halfspace. (left) Perceptron view [source: https://deepai.org/

machine-learning-glossary-and-terms/perceptron], (right) geometric visualization of a 2D
halfspace. Note that w is perpendicular to the hyperplane (you can try to prove this). The points
above the line are labelled positive and those below are labelled negative.

x 7→
[
x
1

]
and w 7→

[
w
b

]
. This increases the dimension of the weight vector by 1, and this extra

dimension absorbs the bias. Going forward, we will assume b = 0.

Now given a training dataset S = {(x1, y1), . . . , (xm, ym)}, we want to find the empirical risk
minimzer by minimizing the following:

ŵ = argmin
w

1

m

m∑
i=1

1[sign(w⊤xi) ̸= yi]

ERM for linear classifiers is computationally hard to solve in the worst case. To make this tractable,
we will make a separability assumption. In particular, we will assume that there is a halfspace
that correctly classifies the data. In particular, there exists w∗ such that for all (xi, yi) ∈ S),
yi = sign(w⊤

∗ xi). We say the data is linearly separable if it satisfies this condition.

3 Perceptron

This model (Perceptron) was an early attempt to model a biological neuron dating to McCulloch
& Pitts in 1943. Figure 1 (left) shows a pictorial representation of the ”neuron” which is what
comprises neural networks today, albeit with different ”activation functions” than the sign/step
function. The term MLP, common jargon in deep learning, stands for Multi-layer Perceptron.

In 1957, Frank Rosenblatt came up with an algorithm called ”Perceptron” to learn this model from
data. The invention of the algorithm gained wide popularity and created a huge wave of excite-
ment. Check out this article from the New York Times titled Electronic ‘Brain’ Teaches Itself in
1958 (https://www.nytimes.com/1958/07/13/archives/electronic-brain-teaches-itself.
html). Perhaps, this was the first instance of what we call deep learning now.

2

https://deepai.org/machine-learning-glossary-and-terms/perceptron
https://deepai.org/machine-learning-glossary-and-terms/perceptron
https://www.nytimes.com/1958/07/13/archives/electronic-brain-teaches-itself.html
https://www.nytimes.com/1958/07/13/archives/electronic-brain-teaches-itself.html

Figure 2: Frank Rosenblatt with a Mark I Perceptron computer in 1960.

3.1 Algorithm

We will now see how the Perceptron algorithm (Algorithm 1) solves the ERM problem in the
linearly separable case. The Perceptron algorithm can also be run with data in an online fashion,
but we will discuss the batch version here.

Algorithm 1: Perceptron

Initialize w1 = 0 ∈ Rd

for t = 1, 2, . . . do
if ∃i ∈ {1, . . . ,m} s.t. yi ̸= sign

(
w⊤
t xi

)
then update wt+1 = wt + yixi

else output wt

end

The update may seem strange, but let us see the intuition behind this. Suppose xi is the example
that is misclassified and assume ∥xi∥2 = 1.

• If the true label was positive, then w⊤
t+1xi = w⊤

t xi + ∥xi∥2 = w⊤
t xi + 1.

• If the true label was negative, then w⊤
t+1xi = w⊤

t xi − ∥xi∥2 = w⊤
t xi − 1.

In both cases, the update moves the weight in the right direction. Also see Figure 3 for a visual
interpretation of this. This does not imply that the update would be good for the other examples.

Given the intuition, let us try and formalize it. For simplicity, we will assume the data lies in the
unit ball, so that ∥xi∥2 ≤ 1. We will also assume that ∥w∗∥2 = 1. Lastly, we will define a very
useful quantity in machine learning called the margin. The margin γ is the minimum distance of
any point from the hyperplane. Recall, in Homework 0, we calculated the distance of a point from

3

Figure 3: (left) The update of the Perceptron Algorithm using a mislabelled example. Note that
after this update, the Perceptron algorithm will terminate. (right) Margin defined as the distance
from the hyperplane of the closest example. Source: Lecture notes from Cornell CS 4/5780 https:

// www. cs. cornell. edu/ courses/ cs4780/ 2022sp/ notes/ Notes06. pdf .

the separating hyperplane w⊤
∗ x = 0. Using that, we get

γ = min
i∈{1,...,m}

|w⊤
∗ xi|.

Lemma 1. For all i ∈ {1, . . . ,m}, yi(w⊤
∗ xi) ≥ γ.

Proof. Recall that yi = sign(w⊤
∗ xi) based on our separation assumption. Thus we have,

yi(w
⊤
∗ xi) = sign(w⊤

∗ xi)(w
⊤
∗ xi)

= |w⊤
∗ xi|.

Here the second equality follows from observing that sign(a)a = |a| for all a. Now, using our margin
assumption, we know that |w⊤

∗ xi| ≥ minj∈{1,...,m} |w⊤
∗ xj | ≥ γ.

Lemma 2. For all i ∈ {1, . . . ,m} such that yi ̸= sign(w⊤
t xi), we have yi(w

⊤
t xi) ≤ 0.

Proof. Since yi ̸= sign(w⊤
t xi) =⇒ yi = − sign(w⊤

t xi). Thus we have,

yi(w
⊤
t xi) = − sign(w⊤

t xi)(w
⊤
t xi)

= −|w⊤
t xi| ≤ 0.

Here the second equality follows from observing that sign(a)a = |a| for all a. And the last inequality
follows from observing that |a| ≥ 0 for all a.

Now with these lemmas in hand, let us state the main convergence theorem.

Theorem 3. The Perceptron algorithm stops after at most 1/γ2 rounds, and returns a hyperplane
w such that ∀i ∈ [m], sign(w⊤xi) = yi, that is, all points are correctly classified.

Proof. By the terminating condition of the algorithm, if the algorithm terminates, it must have all
points correctly classified. Let us know show that the algorithm does terminate and in fact in time
independent of the input dimension.

4

https://www.cs.cornell.edu/courses/cs4780/2022sp/notes/Notes06.pdf
https://www.cs.cornell.edu/courses/cs4780/2022sp/notes/Notes06.pdf

We want to show that we are making progress, and wt is getting closer to w∗. One way to measure

this is by looking at the cosine of the angle between wt and w∗, that is,
w⊤

∗ wt

∥wt∥ .

Suppose at time t, we update with (xi, yi) for some i, then

w⊤
∗ wt+1 = w⊤

∗ wt + yiw
⊤
∗ xi

≥ w⊤
∗ wt + γ.

Here the first equality follows from the definition of the update. The second inequality follows from
Lemma 1.

Also observe that

∥wt+1∥22 = (wt + yixi)
⊤(wt + yixi)

= ∥wt∥22 + y2i ∥xi∥22︸ ︷︷ ︸
≤1

+2 yiw
⊤
t xi︸ ︷︷ ︸

≤0

≤ ∥wt∥22 + 1.

Here the last inequality follows from (a) our assumption that ∥xi∥22 ≤ 1, and (b) from Lemma 2
since (xi, yi) is misclassified.

This implies that after T rounds, we have,

w⊤
∗ wT+1 ≥ w⊤

∗ wT + γ

≥ (w⊤
∗ wT−1 + γ) + γ

...

≥ (w⊤
∗ w1) + Tγ

= Tγ.

The above follows from substituting the recurrence repeatedly and observing that w⊤
∗ w1 = 0 since

w1 = 0.

A similar calculation gives us,

∥wT+1∥22 ≤ T =⇒ ∥wT+1∥2 ≤
√
T .

This implies that the cosine satisfies,

w⊤
∗ wT+1

∥wT+1∥2
≥ γT√

T
= γ

√
T .

Now we know that the cosine is bounded above by 1. Thus

1 ≥ w⊤
∗ wT+1

∥wT+1∥2
≥ γ

√
T =⇒ T ≤ 1/γ2.

This completes the proof.

Note: It is helpful to go through the proof and see exactly where what assumption is used, and
how necessary it is.

5

Figure 4: Data drawn from an XOR function. Source: Lecture notes from Cornell CS 4/5780
https: // www. cs. cornell. edu/ courses/ cs4780/ 2022sp/ notes/ Notes06. pdf .

Limitations of Perceptron. Minksy and Papert wrote a book titled ’Perceptrons’ in 1969 which
showed that the Perceptron algorithm could not learn XOR functions (Figure 4). Such data is not
linearly separable.

The book became widely popular as a criticism for neural networks (or perceptrons) and is said to
have led to the AI winter which lasted till the mid-90s.

Apart from not working on non-linearly separable data, it cannot handle noise in the label. This
has led to developments of other techniques that we will study in the later part of the course.

6

https://www.cs.cornell.edu/courses/cs4780/2022sp/notes/Notes06.pdf

	Linear Predictors
	Binary Classification with Linear Predictors
	Perceptron
	Algorithm

