CIS5200: Machine Learning Spring 2023

Lecture 19: Boosting
Date: March 28, 2023 Author: Surbhi Goel

Acknowledgements. These notes are heavily inspired by notes by Rob Schapire (Princeton)
and Kilian Weinberger (Cornell).

Disclaimer. These notes have not been subjected to the usual scrutiny reserved for formal pub-
lications. If you notice any typos or errors, please reach out to the author.

1 Boosting

Last class we looked at a procedure called Bagging that helps reduce variance of the model. In
this class we will look at a procedure called boosting that helps reduce bias of the model. Boosting
is perhaps the most successful paradigm to emerge out of learning theory that is very actively
used even today. The core idea here is to boost simple learners that do a bit better than random
guessing and combine them in a way to get a more complicated learner that performs very well.
The question of whether this is possible was in fact posed by Michael Kearns in a machine learning
class project in 1988, and later answered in affirmative by Rob Schaphire in 1990.

Let us formalize the setup:
Data: Training set S = {(z1,¥1),.- ., (Tm, ym)} where y; € {—1,1}

Weak Learner: Weak learning algorithm 4 that guarantees better than random performance, for
example, is 55% of the time correct. More formally, given a function class F, for any distribution
D on inputs and labelling function f € F, given a large enough training set drawn from D and
labelled according to f, with probability 1 — §, the algorithm produces a hypothesis f that has
non-trivial risk R(f) < 1/2 — ~. This is the same definition as PAC learning with e = 1/2 — .
Goal: Output a classifier f that gets error € using the weak learner as a sub-routine. f need not
be a function in F.

2 Generic Boosting Algorithm

A simple way to use the weak learner would be to run it multiple times on the dataset and combine
the prediction using perhaps the majority vote. However, if A is deterministic, then re-running it
multiple times will not help get a better estimate. This suggests that we need to modify the data
before re-running A.

One way to modify the data is re-weight it. Let us formalize this by considering a discrete distri-
bution p = (pu1, ..., tm) over [m]. Using this, we get a generic strategy:

https://www.cs.cornell.edu/courses/cs4780/2022sp/notes/LectureNotes22.html
http://www.cis.upenn.edu/~mkearns/papers/boostnote.pdf

Algorithm 1: Generic Boosting Scheme
fort=1,2,...,T do

Construct discrete distribution ju; over [m)]

Run weak learner A on training data sampled according to u; to get classifier f; with
small error over ju, €, = Prjy, [fi(z:) # vi] = 1/2 — 4 < 1/2 — v (by weak learning
assumption).

end
Output final classifier f constructed using fi,..., fr.

This brings us to two questions: (1) How do we choose p;? (2) How do we construct final classifier
f USil'lg fla‘ . '7fT?

3 AdaBoost

AdaBoost or Adaptive Boosting (Freund and Schapire 98) constructs y; by increasing the weights on
hard examples that the weak learner makes mistakes on, and decreasing weights on easy examples
that the weak learner gets right. In particular, for ¢ € [m]

1

i = —
m

Mt i
Pl = 7“ x exp(—oqy; fi(z4)),
t

where ay > 0 is the penalty, and Z; = Z;nzl pit,j exp(—ouy; fi(x)) is the normalizing constant that
ensures f;+1 is a valid distribution. Observe that the easy examples (y; = fi(z;)) are down-weighted
and hard examples (y; # fi(z;)) are up-weighted.

The final classifier is a weighted combination of the weak learners:

T
f(z) = sign (Z atft(x)> :
t=1

The optimal choice of parameter ay is:

_11 1_61&
at—20g o .

AdaBoost is one of the most widely used algorithms because of its ease of implementation. It does
not require knowing -, the weak learning parameter, and is adaptive to whatever value v has. In
fact, we can get strong guarantees for the performance of the final classifier f output by AdaBoost.

Theorem 1. Let f be the output of AdaBoost after T steps, then we have
. 1 &
R(f)=— D 1[f () # yil < exp (—29°T) .
i=1

(2

Note that the above theorem shows that the the training error goes down exponentially with the
number of iterations.

Proof. We will prove this in 3 steps:

Bound on pryi: We have

Tl = % x exp(—ary;fr(x;)) Applying the weight update formula
= XX exp(=ar—1yifr-1(2:)) X exp(=aryifr(z:)) Expanding from iteration 1 to T
m Zrq Zr
T
1 — . .
= — exp(—anyi fi(zi)) Combining the expression
m Zt
t=1
exp (=31, Oétyift(ifz'))
= 7 Factoring out the exponent
m]l Z:
= w Substituting the weighted classifier as f
m]l—y Ze

Bound on R(f): Observe that

I
3=
M-

@
Il
—

]:Z(f) 1[f(x;) # il Definition of training error

I
S|
M-

@
Il
—_

1y f(x;) < 0] Rewriting using the inequality y; f (z;) <=0

IA
3|~
INgE
@
4
o]
N
&
=
&

@
Il
-

Upper bounding the indicator by the exponential

Substituting the bound on pur4q from before

Il
I~
—
N
~_
X
Nk
=
~
A

~
Il
,_.

I
=
N

Simplifying the expression

)
I

Bound on Z;: We have,

m
Zy = Zﬂt,j exp(—auy; fi(7;)) Definition of Z,
j=1

m
= Z,um (]l[yj = fi(xj)]e” + 1]y; # ft(azj)]eo‘t) Ezpanding the exponential using indicators
j=1

m

=(1—¢e)e + e Observing that Z e Ly # fi(zy)] is e
j=1

=2ve&(l —€) Substituting the value of

=4/1— 447 Substituting the value of v4

< exp(—277) Using 1 + a < exp(a)

< exp(—27?) Using v > vy

1.0-

0.5-

10 100 1000 -1 -0.5

Figure 1: From Schapire et al’98 showing that boosting does not overfit, due to maximizing margin.
(left) x-axis is number of rounds, y-axis is error (in %). The top curve is test error and the lower
curve is training error. (right) x-axis is margin, y-axis is cumulative distribution. The three curves
correspond to different training iterations.

Now combining the above two, we have

T T
R(f) <[] 2% < J]exp(—29%) = exp(—2+°T).
t=1 t=1

4 Generalization Performance of AdaBoost

In the previous section we showed that the training error goes down exponentially fast. It also
seems that the classifier we get with more iterations gets more complex. This would imply that
even though we reduce bias, we are increasing variance, leading to overfitting. However, more often
than not, we do not observe any overfitting as T' gets larger. See Figure 1 (left) for an example of
a setup where no overfitting is observed. In fact, test error continues to drop even after training
error has stopped improving.

Why does this happen? Well, the answer is margins. Much like we saw in SVM, here the boosting
algorithm implicitly ensures large margin under a slightly different notion of margin. Here the
margin is based on the confidence in prediction, that is, weight of correct classifiers minus the
weight of incorrect classifiers. If this quantity is large, we are pretty sure of our prediction. If it is
negative, our prediction is incorrect.Observe that in Figure 1 (right), the margin for all points is
at least 0.5. This allows for generalization.

Note: This phenomenon is also observed in neural networks where overfitting does not imply poor
generalization.

5 AdaBoost as a Coordinate Descent Algorithm

AdaBoost can be reinterpreted as a coordinate descent algorithm operating within the function
space of weak classifiers. From this standpoint, the optimization problem is formulated as the
minimization of the exponential loss over a function f, which is a linear combination of weak
classifiers fi,....

The exponential loss function ¢(«) is expressed as follows:

Zexp —yif l’z = ZGXP _ylzajf] 131,

Within the context of coordinate descent, the optimization process entails selecting a single co-
ordinate and minimizing the loss function concerning that coordinate. Given that the number of
weak hypothesis is infinite, we need a process for coordinate selection. This is done by identifying
the weak classifier f; that yields the largest decrease in loss (steepest descent) and subsequently
determining the corresponding oy to take in that direction.

Remarkably, this procedure exhibits strong parallels with the AdaBoost algorithm. We will skip
the details of how exactly these two match.

	Boosting
	Generic Boosting Algorithm
	AdaBoost
	Generalization Performance of AdaBoost
	AdaBoost as a Coordinate Descent Algorithm

