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1 VC Dimension

Last class we studied the definition of VC dimension.

Definition 1 (VC dimension). VC dimension of a function class F is the size of the largest set S
that can be shattered by F . Here, we say that a set S is shattered by F if ΠF (S) = 2|S|.

We saw that the Sauer’s Lemma relates VC dimension to ΠF (m) and we get that for m > d, for
any ERM f ,

R(f) ≤
⌈
log(|ΠF (2m)|/δ)

m

⌉
≲

d log(m/δ)

m
.

This can be improved to:

R(f) ≲
d+ log(1/δ)

m
.

1.1 VC Classes

In order to show a VC dimension bound of d for a function class F , we need to do the following 2
steps:

• Show that V C(F) ≥ d by giving an explicit set of d points that are shattered by F .

• Show that V C(F) ≤ d by proving that no set of d+ 1 points can by shattered by F .

Together these imply that V C(F) = d.

In the last class we looked at the examples of thresholds, intervals, and rectangles. Let us look at
the class of linear classifiers.
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Example 4 (linear classifiers/halfspaces): The VC dimension of linear classifiers (halfspaces)
F = {x 7→ sign(w⊤x) : w ∈ Rd} is d. If we allow for the bias term, then the VC dimension is d+1.

In order to prove this, let us first describe a set S of d points that is shattered by the class.
Consider the set of points xi = ei for i ∈ [d] where ei is the ith standard basis that has 1 at
coordinate i and 0 everywhere else. In order to show that these points can be shattered, for all
labeling y1, . . . , yd ∈ {−1, 1} we need to show the existence of f ∈ F that realizes it. Consider
labeling y1, . . . , yd ∈ {−1, 1}, then choosing w as below suffices.

w =

m∑
i=1

yiei

Then we have, that for all i ∈ [m], sign(w⊤xi) = sign(yi) = yi. Thus it generates the labeling
y1, . . . , ym. Since we can do this for any labeling, these points can be shattered.

Now we need to show that no d+ 1 points can be shattered. In order to show this, let us consider
any set of d + 1 points x1, . . . , xd+1. We know that no set of d + 1 d-dimensional vectors can be
linearly independent, thus there exists some j ∈ [d+ 1] such that

xj =
∑
i ̸=j

αixi,

such that at least one αi ̸= 0. Suppose we consider the labeling where yj = −1 and for all i ̸= j,
yi = sign(αi) if αi ̸= 0 else yi = 1. We will show that no w can achieve this labeling. Suppose
there is a w that achieves this labeling then we have for all i ̸= j, if αi ̸= 0 then αi(w

⊤xi) > 0 since
sign(w⊤xi) = yi = sign(αi). This gives us,

w⊤xj =
∑
i ̸=j

αiw
⊤xi > 0.

Thus w would label xj incorrectly as positive when yj = −1. This proves that no d+ 1 points can
be shattered.

2 Uniform Convergence

The VC dimension actually characterizes a stronger property of generalization known as uniform
convergence. This property becomes important when we move away from realizability.

Definition 2 (Uniform Convergence). A function class F has the uniform convergence property if
for any distribution D over the input space and for any ϵ, δ > 0, there exists a sample size m such
that for any training set of m samples S drawn i.i.d. from D, with probability at least 1 − δ, the
following holds for all f ∈ F : ∣∣∣R(f)− R̂(f)

∣∣∣ ≤ ϵ.

For classes with bounded VC dimension, we have

Theorem 3 (Uniform convergence for VC classes). Let F be a function class with VC dimension
d, then with probability 1− δ over the draw of a training set of size m, for all f ∈ F∣∣∣R(f)− R̂(f)

∣∣∣ ≲√d+ log(1/δ)

m
.

2



We will not prove the above, but we will prove a similar statement for finite classes.

Theorem 4 (Uniform convergence for finite classes). Let F be a finite function class, then with
probability 1− δ over the draw of a training set of size m, for all f ∈ F∣∣∣R(f)− R̂(f)

∣∣∣ ≲√ log |F|+ log(1/δ)

m
.

Proof. We will prove this theorem using the union bound and Hoeffding’s inequality1.

Consider a f ∈ F , and let Zi be the loss of f on the i-th example. We have:

R̂(f) =
1

m

m∑
i=1

Zi.

By definition, the true risk R(f) is the expected value of the loss of for any example i:

R(f) = E[Zi].

Since the Zi are i.i.d., we can apply Hoeffding’s inequality to bound the probability of the difference
between the empirical risk and the true risk being large:

Pr
[
|R̂(f)−R(f)| ≥ ϵ

]
≤ 2 exp

(
−2mϵ2

)
.

This was for a single f . Now, we want it to hold for all f ∈ F . To do this, we apply the union
bound:

Pr

⋃
f∈F

{
|R̂(f)−R(f)| ≥ ϵ

} ≤
∑
f∈F

Pr
[
|R̂(f)−R(f)| ≥ ϵ

]
≤ 2|F| exp

(
−2mϵ2

)
.

We want this probability to be at most δ, so we set:

2|F| exp
(
−2mϵ2

)
≤ δ.

Solving for ϵ, gives us the result.

3 Agnostic Learning

Now using uniform convergence, we can show a PAC guarantee when there is no perfect classifier.

Theorem 5 (Agnostic PAC Learning). With probability 1− δ, for any ERM f̂ ∈ argminf∈F R̂(f)
over training set size m, we have,

R(f̂)−min
f∈F

R(f) ≲

√
d+ log(1/δ)

m
.

1The form of Hoeffding’s inequality we use can be stated using coin tosses as: Consider a coin with bias p flipped
m times. Let X be the number of times the coin showed up as heads, then Pr

[∣∣X
m

− p
∣∣ > ϵ

]
≤ 2 exp(−2mϵ2).We will

not cover the proof of the Hoeffding’s inequality but use it as a tool. You can read more about it here
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ERM solution gets true risk close to the best possible true risk attainable by any function in the
function class even when data is not perfectly separable by the function class.

Proof. First, let f∗ ∈ argminf∈F R(f) be the function with the smallest true risk in the function

class F . Also, consider the ERM hypothesis f̂ ∈ argminf∈F R̂(f). By definition of ERM, we have
that

R̂(f̂) ≤ R̂(f∗).

From the uniform convergence theorem (Theorem 3) for VC classes, we have that with probability
at least 1− δ, for all f ∈ F : ∣∣∣R(f)− R̂(f)

∣∣∣ ≲√d+ log(1/δ)

m
.

This implies that with probability 1− δ,

R(f̂)− R̂(f̂) ≲

√
d+ log(2/δ)

m

and

R̂(f∗)−R(f∗) ≲

√
d+ log(2/δ)

m
.

By adding the above and using R̂(f̂) ≤ R̂(f∗), we get with probability 1− δ,

R(f̂)−R(f∗) = R(f̂)−min
f∈F

R(f) ≲

√
d+ log(1/δ)

m
.

4 Bias/Variance

We can look at the error sources in the previous bound as bias and variance.

R(f̂) ≤ min
f∈F

R(f)︸ ︷︷ ︸
bias

+O

(√
d+ log(1/δ)

m

)
︸ ︷︷ ︸

variance

.

The bias is the error that is due to the model itself, that is, the choice of the function class even if
given infinite training data. The variance is the error that is due to the finite amount of data used,
that is, the error induced by different choices of the finite training data. See Figure 1 for a more
intuitive visualization that captures the notion of bias and variance.

Keeping the training dataset size fixed, as we increase the model/function class complexity, the
bias reduces as we are able to approximate the label better whereas the variance increases since
the model has more capacity to fit to the noise in the training dataset. See Figure 2 for a graphical
sketch of this. This suggests that there is a sweet spot of model complexity which trades off the
two errors to get the best possible total error.

Furthermore, in the regime of high bias and low variance, we are underfitting, that is, our function
class is not good enough to fit the labels. On the other hand, in the regime of low bias and high
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Figure 1: Bias and variance visualization. Here the center of the target achieves the lowest possible
error with the error increasing as we go outside. Each point represents a new training data and
its corresponding error If the points are off the center, then the model has high bias. If they
are more spread out, then it has high variance. Src: http://scott.fortmann-roe.com/docs/

BiasVariance.html

Figure 2: Bias-variance tradeoffs for fixed training set size m. Src: https://en.wikipedia.org/
wiki/Bias%E2%80%93variance_tradeoff
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Figure 3: Underfitting and overfitting models. Src: https://www.geeksforgeeks.org/

underfitting-and-overfitting-in-machine-learning/

variance, we are overfitting, that is, our function class is good enough for our task but the model is
learning a more training set dependent classifier. See Figure ?? for an example of the two regimes.

Now we can decide what to do based on which regime we are in:

If we have high variance, that is training error is close to 0 but test loss is high, then we can
remedy this by increasing the training set size, or reducing the complexity of the function class. We
can also use a procedure called bagging to reduce variance that we will discuss in a future lecture.

If we have high bias, that is, the training error is high, then we can remedy this by increasing the
complexity of our dataset, or making the feature space richer. We can also use a procedure called
boosting, which we will talk about in a future lecture.

6

https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/
https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/

	VC Dimension
	VC Classes

	Uniform Convergence
	Agnostic Learning
	Bias/Variance

