
CIS5200: Machine Learning Spring 2023

Lecture 14 and 15: Learning Theory

Date: March 2 and 14, 2023 Author: Surbhi Goel

Acknowledgements. These notes are heavily inspired by notes by Rob Schapire (Princeton),
Michael Kearns (UPenn), and Hamed Hassani (UPenn).

Disclaimer. These notes have not been subjected to the usual scrutiny reserved for formal pub-
lications. If you notice any typos or errors, please reach out to the author.

1 Generalization

So far, we have mostly focused on solving the empirical risk minimization problem for various
models, that is, the problem of finding a minimizer of the loss over the training set amongst a
function/hypothesis class. However, doing well on the training data may not suffice for doing well
on unseen data that we may encounter when deploying our models. For example, consider a rather
silly predictor that memorizes the entire training set, that is, outputs the correct value, but predicts
0 everywhere else. This silly predictor gets 0 training error or empirical risk, however, we do not
expect this to do well in practice. Therefore, what we want from our learned model is that it
generalize well, that is, it has small true risk over the underlying distribution that the training data
is drawn from.

More formally, for a fixed hypothesis/function class F , let f̂ be the empirical risk minimizer with
respect to loss ℓ over training data S = {(x1, y1), . . . , (xm, ym)}, that is,

f̂ = argmin
f∈F

1

m

m∑
i=1

ℓ(f(xi), yi)︸ ︷︷ ︸
Empirical Risk R̂(f)

.

Then the risk of the predictor f̂ (generalization error) on unseen examples from the underlying
distribution D is as follows,

R(f)︸ ︷︷ ︸
True Risk

= E(x,y)∼D [ℓ(f(x), y)] .

Using this we have,
R(f̂) = (R(f̂)− R̂(f̂))︸ ︷︷ ︸

generalization gap

+R̂(f̂).

ERM only guarantees that the latter quantity is small, and we need to ensure that the former
(generalization gap) is also small in order to get small generalization error.

In this and the next lecture, we will quantify this gap in terms of the size of the training dataset
and the complexity of the underlying function class F .

1

2 PAC Learning

So our goal is to minimize the generalization error of the learned predictor from any given training
dataset drawn from the underlying distribution. To find exactly the optimal classifier by observing
only a finite training dataset is too strong of an expectation. Furthermore, finding such a predictor
for every possible training dataset is also too strong of an expectation. 1

In practice, we would be happy with an approximately good solution that can be found with high
probability from a large enough finite training set. This idea was captured beautifully in the PAC
(Probably Approximately Correct) model introduced by Leslie Valiant in 1984. We will focus on
the 0/1 loss for the rest of the lecture.

Definition 1. A function class F is PAC learnable if there exists an algorithm A and a function
mF : (0, 1)2 → N with the following property: such for every labelling function f ∈ F , for every
distribution D on feature space X 2, and for all ϵ, δ ∈ (0, 1), if A is given access to a training dataset
S of size m ≥ mF (ϵ, δ) where the features are drawn from D and labels are according to f , then
with probability 1 − δ (over the choice of the training dataset) algorithm A outputs a predictor f̂
such that R(f̂) ≤ ϵ, that is,

Pr
x∼D

[
f̂(x) ̸= f(x)

]
≤ ϵ.

Here ϵ is the error parameter and δ is the confidence parameter. Note that the predictor f̂ is
approximately correct with high probability and hence the name Probably Approximately Correct
learning.

Sample Complexity The function mF : (0, 1)2 → N determines the sample complexity of
learning, that is, how large should your training dataset be in order to get generalization error
at most ϵ with probability at least 1 − δ. This quantity depends on the complexity/size of the
underlying function class F . Intuitively, the larger or more complex the function class, the more
data you would need to learn it.3

3 Complexity of Function Class

We will now formalize what the complexity of a function class is. We will first look at finite
function classes and then consider the more general class of infinite function classes which includes
the models we have been looking at such as linear classifiers.

3.1 Finite Function Classes

Consider a finite function class F := {f1, . . . , f|F|}, then a natural notion of complexity is the size
of this function class |F|. A natural question to ask is, are finite function classes PAC learnable?

1Imagine a bad draw of the dataset that has very limited information about the true predictor.
2Note that here we defined D to be a distribution over X and not X × Y . This is because we are making a

realizability assumption, where for any input x, the label y is determined deterministically as f(x) for some f ∈ F .
Thus, there is no distribution over y. This model can be extended to handle non-realizable data.

3This intuition is not always correct!

2

And if so, then how does the sample complexity depend on |F|?

Theorem 2. Every finite function class F is PAC learnable with sample complexity

mF (ϵ, δ) ≤
⌈
log(|F|/δ)

ϵ

⌉
.

Proof. We will show that A being the ERM algorithm suffices. Let f̂S be the hypothesis output by
A on dataset S. Since we are assuming that there is a perfect classifier f∗, we have f̂S(xi) = f∗(xi)
for all i ∈ [m]. To show that F is PAC learnable up to error ϵ with probability 1 − δ, we need to

upper bound the probability that f̂S is bad (R(f̂S) > ϵ) by δ, that is, Pr
[
f̂S is ϵ-bad

]
≤ δ.

Let B = {f ∈ F : f is ϵ-bad}. Note that B is not dependent on the training set we draw. Now we
have

Pr
S

[
f̂S is ϵ-bad

]
= Pr

S

[
f̂S is ϵ-bad ∧ R̂(f̂S) = 0

]
f̂S is an ERM

≤ Pr
S

[
∃f ∈ F : f is ϵ-bad ∧ R̂(f) = 0

]
for events A,B if A =⇒ B then Pr[A] ≤ Pr[B]

= Pr
S

[
∃f ∈ B : R̂(f) = 0

]
by definition of B

≤
∑
f∈B

Pr
S

[
R̂(f) = 0

]
by union bound

=
∑
f∈B

Pr
S
[∀i ∈ [m] : f(xi) = f∗(xi)]

=
∑
f∈B

m∏
i=1

Pr
S
[f(xi) = f∗(xi)] samples are i.i.d.

=
∑
f∈B

m∏
i=1

(
1− Pr

S
[f(xi) ̸= f∗(xi)]

)

=
∑
f∈B

m∏
i=1

(1−R(f)) Pr [f(x) ̸= f∗(x)] = R(f)

≤
∑
f∈B

(1− ϵ)m f is ϵ-bad

= |B| (1− ϵ)m

≤ |F| (1− ϵ)m B ⊆ F
≤ |F| exp(−mϵ) 1− a ≤ exp(−a)

Union bound: For events A,B, Pr[A ∪B] ≤ Pr[A] + Pr[B].

Since we want the above quantity to be ≤ δ in order to get our PAC guarantee, we get,

|F| exp(−mϵ) ≤ δ =⇒ m ≥ log(|F|/δ)
ϵ

.

This concludes our proof.

3

Another way to read this is,

R(f̂S) ≤
log(|F|/δ)

m

Things to note here:

• As the function class becomes larger, the upper bound becomes larger. The more the number
of possible rules, the more challenging it is to generalize.

• The more data we have in the training dataset, the smaller our upper bound gets.

• For higher probability of success, we need more data to get the same error guarantee.

3.2 Infinite Function Classes

It is not immediately clear how to characterize the complexity of an infinite function class. However,
one important consequence of PAC-learnability is that it is sufficient to just work with finite datasets
and observe the behavior of the function class only on the training dataset.

We can define the behavior of a function class on a training set S as ΠF (S) = {(f(x1), . . . , f(xm)) :
f ∈ F}, that is, all possible labellings that any function in the class can generate. Define ΠF (m) =
maxS;|S|=m |ΠF (S)| to be the maximum possible labellings over all possible training sets. this is
also known as the growth function for function class F . Note that ΠF (m) ≤ 2m since the total
number of possible labellings of m examples is 2m.

We can use ΠF (m) as a proxy of the size of the function class to get an analogous result,

Theorem 3. With probability 1 − δ, any predictor f ∈ F with R̂(f) = 0 for training set size m
satisfies

R(f) ≤
⌈
log(|ΠF (2m)|/δ)

m

⌉
.

Proof. We will not cover the proof in class. The proof uses some cool symmetrization ideas. If you
are interested, the full proof can be found in the following notes: the proof starts in Section 3 and
is continued in Section 1.

Example 1 (thresholds): Let us consider the function class of one-dimensional thresholds (see
Figure 1) F = {fa : a ∈ R} where

fa(x) =

{
1 if x ≥ a

−1 otherwise.

Consider a dataset of 3 points x1 < x2 < x3. There are 4 possible labellings :

• (−1,−1,−1) with fa such that a > x3

• (−1,−1, 1) with fa such that x2 < a ≤ x3

• (−1, 1, 1) with fa such that x1 < a ≤ x2

4

https://www.cs.princeton.edu/courses/archive/spr03/cs511/scribe_notes/0213.pdf
https://www.cs.princeton.edu/courses/archive/spr03/cs511/scribe_notes/0218.pdf

Figure 1: One-dimensional threshold fa(x) =

{
1 if x ≥ a

−1 otherwise.

• (1, 1, 1) with fa such that a ≤ x1

The other 4 labellings, (−1, 1,−1), (1,−1, 1), (1, 1,−1), (1,−1,−1), are not attainable, since the
functions in F can have only one point of change from −1 to 1 as we go from smaller to larger
values of x. In general, for m datapoints, the same logic gives us, ΠF (m) = m + 1 which is
exponentially smaller than 2m.

Example 2 (intervals): Let us consider the function class of intervals (ee Figure 2) F = {fa,b :
a ≤ b ∈ R} where

fa,b(x) =

{
1 if a ≤ x ≤ b

−1 otherwise.

Consider again the dataset of 3 points x1 < x2 < x3. There are now 7 possible labellings :

• (−1,−1,−1) with fa,b such that a, b > x3

• (−1,−1, 1) with fa,b such that x2 < a ≤ x3 and x3 ≤ b

• (−1, 1, 1) with fa,b such that x1 < a ≤ x2 and x3 ≤ b

• (1, 1,−1) with fa,b such that a ≤ x1 and x2 ≤ b < x3

• (1,−1,−1) with fa,b such that a ≤ x1 and x1 ≤ b < x2

• (1, 1, 1) with fa,b such that a ≤ x1 and x3 ≤ b

• (−1, 1,−1) with fa,b such that x1 < a ≤ x2 and x2 ≤ b < x3

The labelling (1,−1, 1) is not attainable, since the functions in F has 1s in a contiguous block. In

general, for m datapoints, ΠF (m) = m(m+1)
2 + 1. Try to prove this, think about how many options

do you have for a, b. Note that this is O(m2) compared to O(m) in the threshold case.

4 VC Dimension

In order to define VC dimension, we will first define the notion of shattering.

5

Figure 2: Intervals fa,b(x) =

{
1 if a ≤ x ≤ b

−1 otherwise.

Definition 4 (shattered set). A set S of inputs is said to be shattered by function class F if
|ΠF (S)| = 2|S|, that is, F can realize all possible labellings for the set of points in S.

Definition 5 (VC dimension). VC dimension of a function class F is the size of the largest set S
that can be shattered by F .

In order to show a VC dimension bound of d for a function class F , we need to do the following 2
steps:

• Show that V C(F) ≥ d by giving an explicit set of d points that are shattered by F .

• Show that V C(F) ≤ d by proving that no set of d+ 1 points can by shattered by F .

Together these imply that V C(F) = d. Let us look at few examples:

Example 1 (thresholds): Consider the class of 1-dimensional thresholds. Any set of size 1 can
be easily shattered. However, no set of size 2 can be shattered. Consider any set of size 2 {x1, x2}.
Assume WLOG that x1 ≤ x2. Then (1,−1) is not attainable since any function in the class is
non-decreasing with respect to the input. Therefore, the VC dimension is 1.

Example 2 (intervals): Consider the class of intervals. We previously showed that for any 3
points x1 ≤ x2 ≤ x3, the labelling (1,−1, 1) is not possible since the positives have to be contiguous.
However, any x1 < x2 can be shattered. You can check this by finding a, b that give all possible
labellings. Thus, the VC dimension of intervals is 2.

Example 3 (axis-aligned rectangles): Consider the class of axis-aligned rectangles in R2,
where everything inside the rectangle is labelled 1 and everything outside is -1. Figure 3 shows the
existence of 4 points that can be shattered by this class. However, no 5 points can be shattered by
this function class. In order to prove this, consider any set of 5 points and let xL, xR, xT , xB be the
leftmost, rightmost, topmost, and bottom most points respectively from the set. Now observe that
the the remaining 5th point must lie within the rectangle formed by these 4 points. Therefore, the
labelling of xL, xR, xT , xB being 1 and the remaining 5th point being -1 is not possible.

6

Figure 3: A set of 4 points that are shattered by the class of axis-aligned rectangles in R2. Here
yellow indicates label 1 and red indicates label -1. Figure idea borrowed from Rob Schapire’s notes.

Example 4 (halfspaces): The VC dimension of linear classifiers (halfspaces) sign(w⊤x + b) is
d + 1. The VC dimesnion of linear classifiers with margin γ and inputs bounded by norm 1 is
O(1/γ2).

An amazing theorem by Sauer relates VC dimension to ΠF (m).

Theorem 6 (Sauer’s Theorem). Let d = V C(F). Then for any m > d,

ΠF (m) = O(md).

Using this in Theorem 3, we get that for m > d, for any ERM f , R(f) ≤
⌈
log(|ΠF (2m)|/δ)

m

⌉
≲

d log(m/δ)
m .4 This can be improved to get the following fundamental result.

Theorem 7 (Fundamental Theorem of Learning). With probability 1−δ, any predictor f ∈ F with
R̂(f) = 0 for training set size m satisfies

R(f) ≲
d+ log(1/δ)

m
.

More generally, when there is no perfect classifier, we can still get an (agnostic) PAC learning
guarantee.

4a ≲ b means that there exists some constant c > 0 such that a ≤ cb.

7

Theorem 8 (Agnostic PAC Learning). With probability 1 − δ, for any ERM f̂ ∈ argminf R̂(f)
over training set size m satisfies

R(f̂)−min
f

R(f) ≲

√
d+ log(1/δ)

m
.

ERM solution gets true risk close to the best possible true risk attainable by any function in the
function class even when data is not perfectly separable by the function class.

8

	Generalization
	PAC Learning
	Complexity of Function Class
	Finite Function Classes
	Infinite Function Classes

	VC Dimension

