
CIS 5200: Machine Learning Spring 2023

Lecture 13 — February 28, 2023

Lecturer: Eric Wong Lecture Notes Scribed by: Keshav Ramji

This lecture was based off David Blei’s notes on Bayesian mixture models and Gibbs
sampling.1

1.1 Starting from Gaussian Mixture Models

1.1.1 GMM Formulation

Recall the general setup for a Gaussian Mixture Model (GMM) for sample x and cluster
(Gaussian) z:

p(x, z) = p(x|z)p(z) = ϕz(x)π(z) (1.1)

In general, we can view this through the following graphical model structure: for the m
samples, we have zi → xi, where we have π (the distribution over the latent variables) as an
input for the zi (i.e. zi ∼ CAT(π)), and for each of the k clusters/Gaussians, we have inputs
µk, and σ for the xi, such that the xi is distributed N(µzi , σ

2I).

Figure 1.1. Graphical model of the GMM.

1http://www.cs.columbia.edu/~blei/fogm/2015F/notes/mixtures-and-gibbs.pdf
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1.1.2 Bayesian Gausian Mixture Model (GMM)

Consider the above framework. Introduce a new parameter λ, which refers to the standard
deviation for the prior for the centers of the clusters. That is, λ is an input to µk for the
k clusters, such that the prior distribution for the µk is N(0, λ2I). Essentially, the key
difference is that µk is now a random variable, with an input parameter λ, which follows a
Gaussian distribution with mean 0 and variance λ2I.

Figure 1.2. Graphical model of the Bayesian GMM with a prior on µk.

Consider the following real-world application: let xi (our observations) represent a biomarker
for the ith patient, and the zi (latent variables), represent subpopulations (e.g. deifned by
age, race, gender, etc.). We can structure this as a GMM with k clusters – the question at
hand is: how likely is µk, given the observations? That is, we want to estimate P (µk|X).
Firstly, observe that this is not the same as πk = P (Z = k), as π controls the relative size
of each cluster but not the cluster locations. By Bayes’ Rule and conditional probability:

P (µk|X) =
P (X|µk) ∗ P (µk)

P (X)
(1.2)

P (µk|X) ∝ P (X|µk) ∗ P (µk) (1.3)

Remark: P (µk|X) is often referred to as the posterior distribution. The ability to have
a posterior is exactly why one might want to ”go Bayesian” and introduce a prior on µk.
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The posterior lets you answer a number of questions that the original setting cannot answer,
since the original GMM setting has P (µk|X) = δµk

. For example, one cannot answer the
question of ”how likely” is any particular cluster centroid µk in the original GMM setting.
One also cannot quantify the degree of uncertainty or confidence intervals around estimates
of µk in the original GMM setting.

1.1.3 An Aside: Probabilistic Graphical Models (PGMs)

An aside: Probabilistic Graphical Models (PGMs) are a field of ML research focused on
defining such graphical model structures. In other words, both the GMM and Bayesian
GMM structures are PGMs. In this setting, we define the observations (i.e. xi) as nodes,
often in a directed graph structure, such that conditional probabilities can be used to estimate
the joint distribution over the observations.

1.2 Building up to MCMC

Ultimately, we can view this by 2 key components of machine learning:

Learning

The learning problem is, given the data X, to estimate the parameters the model. Our
goal, in the setting of the Bayesian GMM, for example, is to estimate certain parameters,
e.g. π, σ, and λ. This can be done through methods such as the Expectation Maximization
(EM) algorithm. These extensions of the EM algorithm for Bayesian models falls under the
category known as ”Variational Inference”, or Variational Bayesian Methods.

Inference

The inference problem is, given the parameters of a model, to make new predictions at test
time. That is, what is of interest to us is P (Xµ+1|X). In other words, this is the probability
of seeing a new data point, at test time, given the data that we’ve seen so far. In a GMM,
this evaluates to the following expression:

P (Xm+1|X) =
∑
k

ϕk(Xm+1) ∗ πk (1.4)

In a Bayesian GMM, the expression evaluates to the following:

P (Xm+1|X) =
∑
k

P (Xm+1|X, z = k)p(z = k) (1.5)

=
∑
k

P (z = k) ∗
∫
µk

P (Xm+1|µk) ∗ P (µk|X)dµ (1.6)

=
∑
k

P (z = k) ∗ Eµ|X [P (Xm+1|µ)] (1.7)

However, evaluating this integral exactly at inference time is challenging! Hence, we now
turn to approximation to solve this problem.
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1.3 Markov Chain Monte-Carlo (MCMC) Methods)

Markov Chain Monte-Carlo (MCMC) Methods solve this problem by approximating this
integral using samples – that is, using the principle of Monte Carlo simulation (running
many samples over instances of the data and taking the expectation over the outcome). We
can compute the expectation over µ|X as follows, for B simulations µ(1), . . . , µ(B):

Eµ|X [P (Xm+1|µ)] =
1

B

∑
b

P (Xm+1|µ(b)) (1.8)

Now we have started by applying the Monte Carlo principle, what remains is to draw
samples from p(µ|X). We will use Markov Chains to draw samples from µ(b), to compute
this expectation.

1.3.1 Markov Chains

The idea of applying Markov Chains here is as follows: we will construct a sequence of µ(i)

(i.e. µ(1), µ(2), . . . , µ(n)) that has the following property:

lim
n→∞

µ(n) ∼ P (µ|X) (1.9)

We won’t go into the specifics, but the sequence will satisfy the Markov Property:

P (µ(t+1)|X,µ(1), µ(2), . . . , µ(t)) = P (µ(t+1)|µ(t)) (1.10)

Sequences satisfying the Markov property (and some other conditions) are known to have a
limiting distribution as n tends to infinity. The trick is to create a sequence whose limiting
distribution matches the target distribution of interest. This idea is the basis of MCMC
algorithms. Gibbs Sampling, which we’ll discuss next, is one way to create such a sequence
such that the limiting distribution is exactly P (µ|X).

When the limiting distribution matches the target distribution P (µ|X), then there is a
natural way to draw samples from the target distribution: simply generate a very long se-
quence and then take the last sample. This gets you one sample from the target distribution.
Repeating this B times will result in a batch of B samples.

1.4 Gibbs Sampling

Gibbs Sampling is one of the simpler sampling algorithms from the family of MCMC algo-
rithms. As inputs, we have:

• X = {x1, x2, . . . , xm}

• The parameters of the Bayesian GMM algorithm, namely π, λ and σ.

• Initialize µk, zi for all K components and M examples
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The unknowns, or the latent variables, in the Bayesian GMM are the µk and zi vari-
ables. The idea of Gibbs sampling is to iterate over all latent variables and sample a new
latent variable conditioned on current value of all other latent variables. This is shown in
Algorithm 1.

Algorithm 1 Gibbs Sampling

for i = 1 . . .M do
Sample zi ∼ P (zi|µ, (Z \ zi), X)

end for
for k = 1 . . . K do

Sample µk ∼ P (µk|Z, (µ \ µk), X)
end for

How do we sample from these conditionals? The core assumption in Gibbs sampling is
that the conditionals are easy to sample from. For the Bayesian GMM, this is the case.
Observe the following simplification of the probabilities of interest in the Gibbs Sampling
Algorithm:

P (zi|µ, zi, X) ∝ P (xi|(Z \ zi), µ) ∗ P (zi) (1.11)

=
ϕzi(xi) ∗ πk

P (µk|Z, (µ \ µk), X)
(1.12)

∝ ϕzi(xi) ∗ πk (1.13)

(1.14)

In other words, P (zi|µ, zi, X) is simply a categorical distribution where each cluster has
probability ϕzi(xi)∗πk of being chosen. This can be sampled from easily! How do we sample
from P (µk|Z, (µ \ µk), X)?

P (µk|Z, (µ \ µk), X) (1.15)

= P (µk|Z,X) (1.16)

∝ P (X|Z, µk) ∗ P (µk) (1.17)

There is a well known algebraic result here that says that, since P (X|Z, µk) is Gaussian and
P (µk) is Gaussian, then the resulting distribution P (µk|Z,X) is also Gaussian with known
parameters. This result is also sometimes referred to as a conjguate prior.2 Specifically, this
is

P (µk|Z,X) = N(µ̂k, λ̂k) (1.18)

where

µ̂k =

(
nk/σ

2

nk/σ2 + 1/λ2

)
X̄k (1.19)

λ̂k = (nk/σ
2 + 1/λ2)I−1 (1.20)

2https://en.wikipedia.org/wiki/Conjugate_prior
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and

nk =
m∑
i=1

1(zi = k) (1.21)

λ̂k =

∑m
i=1 1(zi = k) ∗ xi

nk

(1.22)

Remark: Gibbs sampling is just one technique in the broader family of MCMC sampling
methods. There are in fact other ways to construct sequences whose limit is the posterior
distribution. Gibbs sampling can be viewed as a special case of the Metropolis-Hastings sam-
pling technique, which uses samples from a proposal distribution to generate the Markov
chain. The relation here is that Gibbs sampling is a Metropolis-Hastings algorithm where the
proposal distribution is exactly the conditional distribution of one variable conditioned on all
the others.
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