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1 Course Overview and Logistics

Check out the course website (https://machine-learning-upenn.github.io/) for all informa-
tion regarding schedule, office hours, course policies, material, etc. Also refer to the slides for a
more digestible version of the policies.

Homework 0 will be out on January 12, 2023, and is due on Friday, January 20, 2023.
It will count for 2% of the grade, and you will get full credit if you attempt all questions irrespective
of whether the answer is correct or wrong.

2 What is Machine Learning?

The goal of machine learning is to design and analyze algorithms that improve performance on
an underlying task given experience pertaining to the task. A standard machine learning pipeline
looks as follows:

Figure 1: A typical machine learning pipeline.

The experience here refers to the available training data, the knowledge consists of a predictive
(or decision-making) model, and the performance is evaluated based on some underlying measure
or criterion. In order to specify a machine learning task, we need to specify all of the above: data,
model, and performance measure.

Given the task, the learning algorithm takes the training data as input, and produces the model
as output. In many cases, the learning algorithm is some form of optimization procedure. Different
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algorithms lead to different performance measures, and generally stronger performance is preferred.
There are however several other considerations and trade-offs, such as robustness, interpretability,
computational and statistical efficiency of the model. We will touch upon some of these throughout
the course. It is often useful to put your devil’s advocate hat on, and question the limitations of
different learning algorithms.

3 Types of Machine Learning Tasks

Here are some core types of machine learning tasks.

• Supervised learning : Training data consists of instance and label pairs. The goal is to predict
well on future instances, for e.g. regression, classification.

• Unsupervised learning : Training data consists of only instances, no labels. The goal is to
learn some patterns and structures in the data, for e.g. clustering, anomaly detection.

• Semi-supervised learning : Training data largely consists of unlabelled data, with access to a
small amount of labelled data. The goal is to exploit both unlabelled and labelled data for
better performance. This sits in between supervised and unsupervised learning.

• Online learning : Training data is received in an online fashion, that is, a single instance at a
time. Here the learning algorithm is expected to make a prediction at each timestep prior to
receiving the label.

• Active learning : This is a form of supervised learning where the learning algorithm gets to
choose which instances it wants labels for with usually a cost associated with each labelling
request. This is generally useful in settings where labelling cost is high.

• Reinforcement learning : Unlike the above methods, no data is given to the learning algorithm
(or agent), There is a set of states that an agent can be in, a set of actions that can be taken
in each state which transition the agent to another state, and a ‘reward’ signal based on the
state it transitions into. The goal is to learn a model (or policy), that determines which
action the agent should take in each state, such that it maximizes the overall reward that is
collected by following the policy from a fixed start state.

4 Supervised Learning

Let us dive into the first paradigm, supervised learning. As mentioned above, the learner receives
training data consisting of instances and the corresponding labels and the goal is to learn a model
that predicts the label correctly on new instances that the learner has not seen before. A few
common examples include image classification, spam detection, stock price prediction, etc.

Setup In a typical supervised learning problem, there is an instance space X containing (de-
scriptions of) instances or objects for which predictions are to be made, a label space Y from
which labels are drawn. The training data consists of a finite number of labeled examples S =
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((x1, y1), . . . , (xm, ym)) ∈ (X×Y)m. The goal is to learn from these examples a predictor f : X → Y
that given input x outputs a prediction y = f(x).

Typically the instance space is assumed to be a subset of Rd, that is, the instances are d-dimensional
vectors. For instance, in the case of image classification, these can be viewed as the pixel values of
all the pixels in the image. There are several types of supervised learning problems which govern
the choice of Y. In the setting of binary classification, Y = {0, 1}, and the goal is to predict the
correct class for the input instance. For example, consider the problem of spam detection in your
emails. This is a binary classification task with the classes being spam or not-spam. Another
common setting is regression, Y ⊆ R, and the goal is to predict the real-valued label associated
with the instance. The stock prediction example we saw in class is an instance of this.

Hypothesis class Now in order to find a predictor, we need to specify the class of functions we
are searching over. This set of functions is referred to as the hypothesis class and we will denote
it by F1. Usually the choice of the hypothesis class encodes some inductive bias or prior belief
about the task at hand. For example, we will see when we study neural networks later in the class,
convolutional networks encode translational invariance which is a useful inductive bias for images.
The No Free Lunch Theorem tells us that we need to make some assumptions in order to design
a successful algorithm, and that no one algorithm can do well on all tasks. Therefore, encoding
task-specific assumptions is necessary.

Loss function Finally, we need to evaluate the performance of a predictor. This is usually done
using a loss function ℓ : Y × Y → R+ where the first argument is the prediction and the second
argument is the true label. The loss function captures how good or bad the prediction is. For
instance, in case of binary classification we typically use 0/1 loss which is basically equivalent to
counting all the mistakes the algorithm makes. For regression we typically use the squared loss,
which penalizes based on how far the prediction is from the truth.

ℓ0/1(ŷ, y) =

{
0 if ŷ = y

1 otherwise.
ℓsq(ŷ, y) = (ŷ − y)2.

Evaluating the loss function over a training set gives us a way to compare different predictors.
Lower loss generally (not always) means a better predictor.

Empirical Risk Minimization Given a loss function and a hypothesis class, we can train/learn
a good predictor by minimizing the average loss over the training set S. This optimization is known
as Empirical Risk Minimization (ERM).2

f̂ = argmin
f∈F

1

m

m∑
i=1

ℓ(f(xi), yi)︸ ︷︷ ︸
Empirical Risk R̂(f)

.

See Figure 2 for a pictorial representation of this pipeline.

1It is often denoted by H.
2Note that this is not the only way to solve the problem but is a commonly used approach.
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Figure 2: Putting it together: the supervised learning pipeline.

Generalization Let us ask ourselves whether doing well on training data suffices for the notion
of learning we have in mind. Consider a rather silly predictor that memorizes the entire training
set, that is, outputs the correct value, but predicts 0 everywhere else. This silly predictor gets
0 training error or empirical risk, however, we do not expect this to do well in practice. This is
because we expect the learned predictor to perform well on unseen data that it may encounter.

In order to capture this, a commonly made assumption is the i.i.d. assumption, where we assume
that the data (both training and future) is generated independently and identically from some
underlying (unknown) distribution D. Then we can define the risk of a predictor (generalization
error) f̂ on unseen examples, as the expected loss of a data point drawn from D,

R(f)︸ ︷︷ ︸
True Risk

= E(x,y)∼D [ℓ(f(x), y)] .

Observe the following tautology,

R(f̂) = (R(f̂)− R̂(f̂))︸ ︷︷ ︸
generalization gap

+R̂(f̂).

Our optimization minimized the latter, and we need to ensure that the former (generalization gap)
is also small in order to get small generalization error.

In practice, we divide the given training data into training and test set, train on the training set
and use the test set to evaluate the generalization gap. The usual split is 80/20. Given a sufficiently
large test set, this should be a good enough measure of the true risk of the predictor.

Later in the learning theory section of the course, we will formalize a notion of complexity of a
hypothesis class in order to quantify this gap.

Failures Let us think about how our learning pipeline may fail.
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Figure 3: Effect of hypothesis class on the fit to the data. Image sourced from https://www.

geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/.

• Overfitting : We could end up minimizing the training loss but find that the test loss is large.
Think back to the memorization example, where we observed this as well. Here we say we
have overfit to the training data.

• Underfitting : We might not be able to make the training loss small which would in turn make
the test loss large. This could happen if our chosen function class is not expressive enough to
fit our data.

See Figure 3 for an example of these. This highlights a trade-off (known as the bias-variance
tradeoff) based on the complexity of the underlying hypothesis class. We will explore this in more
detail in subsequent lectures.
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