
CIS5200: Machine Learning Spring 2023

Homework 2

Release Date: February 6, 2023 Due Date: February 17, 2023

• HW2 will count for 10% of the grade. This grade will be split between the written (40 points)
and programming (40 points) parts.

• All written homework solutions are required to be formatted using LATEX. Please use the
template here. Do not modify the template. This is a good resource to get yourself more
familiar with LATEX, if you are still not comfortable.

• You will submit your solution for the written part of HW2 as a single PDF file via Gradescope.
The deadline is 11:59 PM ET. Contact TAs on Ed if you face any issues uploading your
homeworks.

• Collaboration is permitted and encouraged for this homework, though each student must
understand, write, and hand in their own submission. In particular, it is acceptable for
students to discuss problems with each other; it is not acceptable for students to look at
another student’s written Solutions when writing their own. It is also not acceptable to
publicly post your (partial) solution on Ed, but you are encouraged to ask public questions
on Ed. If you choose to collaborate, you must indicate on each homework with whom you
collaborated.

• Bonus Questions: We have added two bonus questions in this homework for extra credit.
These are intended to be more challenging than the non-bonus homework questions.

Please refer to the notes and slides posted on the website if you need to recall the material discussed
in the lectures.

Note: Corrections and clarifications appear in red.

Survey

The course feedback survey is worth up to 2 bonus points. Everyone will receive either 0, 1, or 2
points based on how many responses are received.
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https://www.overleaf.com/read/psmynnzmtthj
https://guides.library.upenn.edu/latex
https://forms.gle/oQizg6Lm2SbHo9jg6


1 Written Questions (40 points + 8 bonus points)

Problem 1: k-means Clustering (15 points + 6 bonus points)

Recall the k-means clustering problem with data x1, . . . , xm. Our goal was to find k clusters denoted
by C1, . . . , Ck ⊆ [m] such that ∪k

i=1Ci = [m] (cover all data points) and for all i ̸= j, Ci ∩ Cj = ϕ
(and are disjoint).

1.1 (4 points) To measure the “goodness” of the cluster we defined

Z(C1, . . . , Ck) =
k∑

l=1

1

2|Cl|
∑
i,j∈Cl

∥xi − xj∥22.

Show that we can equivalently express Z as

Z(C1, . . . , Ck) =

k∑
l=1

∑
i∈Cl

∥xi − µl∥22

where µl =
1

|Cl|
∑

i∈Cl
xi is the centroid of cluster l.

Solution:

1.2 (3 points) In Lloyd’s algorithm, for every cluster C, we choose the cluster center to be the
centroid µ where µ = 1

|C|
∑

i∈C xi. However, there may be other ways of choosing the cluster centers

for k-means, for a cluster C. Let Z(C, z) =
∑

i∈C ∥xi − z∥22 be the “goodness” of cluster C with
center z. Prove that µ is the optimal center for the cluster C, that is,

Z(C, µ) = min
z

Z(C, z).

Solution:

1.3 (3 points) Suppose we pick the center of the cluster z uniformly randomly from the points in
cluster C, such that, Pr[z = xi] =

1
|C| for each i ∈ C. Let us denote this distribution over centers as

ρ. Show that we do not lose too much by choosing a random cluster center according to ρ (similar
to what k-means++ does) compared to choosing the centroid. In particular, prove that

Ez∼ρ[Z(C, z)]=2Z(C, µ).

Solution:

1.4 (5 points) Show that that the EM algorithm to solve Gaussian Mixture Models reduces to
k-means if we set Σl = σ2I for all l ∈ [k] and take the limit σ → 0.

Solution:
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Bonus (6 points) The Lloyd’s algorithm we discussed in class does not always find the optimal
k-means solution, and it is hard in general to find the optimal solution efficiently. However, when
the input is in 1-dimensions, the problem can be solved optimally and efficiently. Design an O(km2)
dynamic programming algorithm for solving the k-means problem in single dimension.

Hint: If we sort the data points x1 ≤ x2 ≤ . . . ≤ xm in increasing order, then the optimal clusters
correspond to intervals of the points, that is, cluster contains all points between some index i and
j, {xi, xi+1, . . . , xj}.

Solution:
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Problem 2: PCA (15 points)

Consider data points x1, . . . , xm such that each feature has been normalized to have mean 0 and
variance 1 (as discussed in class). One way to look at PCA is to take the maximizing variance point
of view, as we did in class. Here we showed that to find the best direction to project the data into
is given by finding u such that it

max
∥u∥2=1

1

m

m∑
i=1

(x⊤i u)
2 = u⊤Σ̂u

where Σ̂ = 1
m

∑m
i=1 xix

⊤
i is the empirical covariance matrix.

Hint: Use the eigenvalue decomposition for Σ̂.

2.1 (3 points) Show that
max

u:∥u∥2=1
u⊤Σ̂u = λ1

where λ1 is the principle eigenvalue (largest eigenvalue) of Σ̂.

Solution:

2.2 (5 points) Consider another alternate view of finding a useful direction u by instead minimizing
the following reconstruction error

min
u:∥u∥2=1

1

m

m∑
i=1

∥xi − (u⊤xi)u∥22.

Show that this is equivalent to maximizing variance, that is

argmax
u:∥u∥2=1

1

m

m∑
i=1

(x⊤i u)
2 = argmin

u:∥u∥2=1

1

m

m∑
i=1

∥xi − (u⊤xi)u∥22.

Solution:

2.3 (7 points) Let us generalize this to k useful directions. In particular, show that the following
two optimizations are equivalent (they have the same optimal solution U⋆). Also find the optimal
solution U⋆.

max
U∈Rk×d:UU⊤=I

1

m

m∑
i=1

∥Uxi∥22 (maximize variance)

min
U∈Rk×d:UU⊤=I

1

m

m∑
i=1

∥xi − U⊤Uxi∥22 (minimize reconstruction error)

Solution:
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Problem 3: Duality (10 points + 2 bonus points)

3.1 (4 points) Consider the following optimization problem:

minimize over w J(w)

such that ci(w) ≤ 0, i ∈ [k]

ej(w) = 0, j ∈ [l]

Consider the dual problem

D(α, β) = min
w

L(w,α, β) := min
w

J(w) +
k∑

i=1

αici(w) +
l∑

j=1

βjej(w)


for αi ≥ 0 and βj ∈ R.

Show that for all feasible α, β, w,
D(α, β) ≤ J(w).

This property is known as weak duality.

Solution:

3.2 (6 points) Consider the following optimization problem:

minimize over w c⊤w

such that Aw = b

w ≥ 0

Show that the dual of this problem is

maximize over β β⊤b

such that A⊤β ≤ c

Recall that the dual is maxα≥0,β D(α, β) where D(α, β) = minw L(w,α, β).

Hint: For Linear optimization problems the optimal α∗, β∗, w∗ satisfy all the KKT conditions. Use
these to derive the dual form.

Solution:

Bonus (2 points) Express the following problem as a linear program:

minimize over w ∥w∥1
such that Aw = b

Solution:
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2 Programming Questions (40 points)

Use the link here to access the Google Colaboratory (Colab) file for this homework. Be sure to
make a copy by going to “File”, and “Save a copy in Drive”. As with the previous homeworks, this
assignment uses the PennGrader system for students to receive immediate feedback. As noted on
the notebook, please be sure to change the student ID from the default ‘99999999’ to your 8-digit
PennID.

Instructions for how to submit the programming component of HW 2 to Gradescope are included
in the Colab notebook. You may find this PyTorch linear algebra reference and this general
PyTorch reference to be helpful in perusing the documentation and finding useful functions for
your implementation.
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https://drive.google.com/file/d/1FxTxhvD24AMU6xX2s_5g8PQzyvoL4S8V/view?usp=sharing
https://pytorch.org/docs/stable/linalg.html
https://pytorch.org/docs/stable/torch.html
https://pytorch.org/docs/stable/torch.html
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