
CIS5200: Machine Learning Spring 2023

Homework 4

Release Date: April 4, 2023 Due Date: April 14, 2023

• HW4 will count for 8% of the grade. This grade will be split between the written (30 points)
and programming parts. The programming part will be released on April 7, 2023. Note that
this will be shorter than previous homework, hence the shorter time span and lower total
grade.

• All written homework solutions are required to be formatted using LATEX. Please use the
template here. Do not modify the template. This is a good resource to get yourself more
familiar with LATEX, if you are still not comfortable.

• You will submit your solution for the written part of HW4 as a single PDF file via Gradescope.
The deadline is 11:59 PM ET. Contact TAs on Ed if you face any issues uploading your
homeworks.

• Collaboration is permitted and encouraged for this homework, though each student must
understand, write, and hand in their own submission. In particular, it is acceptable for
students to discuss problems with each other; it is not acceptable for students to look at
another student’s written Solutions when writing their own. It is also not acceptable to
publicly post your (partial) solution on Ed, but you are encouraged to ask public questions
on Ed. If you choose to collaborate, you must indicate on each homework with whom you
collaborated.

• Bonus Questions: We have added two bonus questions in this homework for extra credit.
These are intended to be more challenging than the non-bonus homework questions.

Please refer to the notes and slides posted on the website if you need to recall the material discussed
in the lectures.
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https://www.overleaf.com/read/ymjpwcgjgwpk
https://guides.library.upenn.edu/latex


1 Written Questions (30 points + 6 bonus points)

Problem 1: Decision Trees (8 points)

Recall that when building a decision tree for classification problems, we used the notion of node
purity instead of classification error when deciding how to grow the decision tree. Consider 3-
dimensional binary data x ∈ R3 where the label y ∈ {−1, 1} is generated from the first two features
as f(x) = x1 ∧ ¬x2. In other words, the entire dataset of all possible examples can be written as:

x1 x2 x3 y

0 0 0 -1
0 0 1 -1
0 1 0 -1
0 1 1 -1
1 0 0 1
1 0 1 1
1 1 0 -1
1 1 1 -1

1.1 (1 point) What is the best possible classification error that a 1-leaf decision tree (i.e. only
the root node predicting a constant value) can achieve?

1.2 (2 points) Consider all three possible splits for growing to a 2-leaf decision tree. Does there
exist a split that achieves lower classification error than a 1-leaf decision tree? If so, what is it? If
not, why is that?

1.3 (1 point) What is the entropy and Gini index of the 1-leaf decision tree?

1.4 (2 point) Consider all three possible splits for growing to a 2-leaf decision tree. Does there
exist a split that achieves lower entropy than a 1-leaf decision tree? Find the split that results in
the lowest possible entropy, and calculate the corresponding entropy of the split.

1.5 (2 point) Consider all three possible splits for growing to a 2-leaf decision tree. Does there
exist a split that achieves lower Gini index than a 1-leaf decision tree? Find the split that results
in the lowest possible Gini index, and calculate the corresponding Gini index of the split.
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Problem 2: PAC Learning (13 points + 3 bonus points)

2.1 (4 points) Consider a different version of PAC learning in which the learner is allowed access
to distribution D+ of inputs with positive labels and D− of inputs with negative labels. In this new
PAC learning model, the learner has to perform well with respect to both D+ and D−, that is, we
want the learner to output a predictor f̂ such that: with probability 1− δ,

Pr
x∼D+

[f̂(x) ̸= f(x)] ≤ ϵ and Pr
x∼D−

[f̂(x) ̸= f(x)] ≤ ϵ.

Show that if a function class if PAC learnable in the original model with sample complexity m(ϵ, δ),
then it is PAC learnable in the new model with sample complexity m(ϵ/2, δ).

2.2 (5 points) Consider a finite domain set X = {x1, . . . , xn} of size n. Now consider the function
class Fk := {f : X → {−1, 1} : |{x : f(x) = 1}| = k}, that is, the set of all functions that assigns
exactly k elements of X to the value 1 and the rest to −1. Compute the VC dimension of this class.

2.3 (4 points) Consider the function class of circles in a 2-dimensional plane, that is, F := {x 7→
sign (∥x− µ∥2 ≤ R) : µ ∈ R2, R ∈ R, R ≥ 0}. Compute the VC dimension of this class.

Bonus (3 points) In class we discussed how the number of parameters is a good proxy for the
VC dimension of the class, for example, linear classifiers. However, this is not always true. In
particular, the function class F = {x 7→ sign (cos(αx+ β)) : α, β ∈ R} with only two parameters
has infinite VC dimension. Give a proof for this.
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Problem 3: Boosting (9 points + 3 bonus points)

In this problem, we will further refine our understanding of the AdaBoost algorithm.

Note: Refer to the lecture notes for the notation.

3.1 (5 point) At iteration t, AdaBoost re-weighted the examples using the weak learner ft, in-
creasing the weights on points on which ft was incorrect and decreasing the weight on which it is
correct. Show that the error of ft on the new distribution µt+1 is as good as random guessing, in
particular,

Pr
i∼µt+1

[ft(xi) ̸= yi] = 0.5.

3.2 (4 points) Recall the class of decision stumps (this time on scalar inputs x ∈ R), that is,
F = {x 7→ b sign(x − θ) : θ ∈ R, b ∈ {−1, 1}}. Show that the final classifier learned by this weak

learning class f(x) = sign
(∑T

t=1 αtbt sign(x− θt)
)
is equivalent to

g(x) =

R∑
r=1

βr1[x ∈ (ηr−1, ηr]]

for some R > 0, βr ∈ R for r ∈ [R] and −∞ = η0 < η1 < . . . < ηR = ∞. Note that g is a piece-wise
constant function, that is, it takes a constant value in each interval.

Bonus (3 points) Describe an algorithm to efficiently find ft at each step t of AdaBoost using
decision stumps (as described above) as the weak learning class. Also give the runtime of the
algorithm in terms of m (the total number of training examples).
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