
CIS5200: Machine Learning Spring 2023

Homework 3

Release Date: March 19, 2023 Due Date: April 1, 2023

• HW3 will count for 10% of the grade. This grade will be split between the written (35 points)
and programming (32 points) parts.

• All written homework solutions are required to be formatted using LATEX. Please use the
template here. Do not modify the template. This is a good resource to get yourself more
familiar with LATEX, if you are still not comfortable.

• You will submit your solution for the written part of HW3 as a single PDF file via Gradescope.
The deadline is 11:59 PM ET. Contact TAs on Ed if you face any issues uploading your
homeworks.

• Collaboration is permitted and encouraged for this homework, though each student must
understand, write, and hand in their own submission. In particular, it is acceptable for
students to discuss problems with each other; it is not acceptable for students to look at
another student’s written Solutions when writing their own. It is also not acceptable to
publicly post your (partial) solution on Ed, but you are encouraged to ask public questions
on Ed. If you choose to collaborate, you must indicate on each homework with whom you
collaborated.

• Bonus Questions: We have added two bonus questions in this homework for extra credit.
These are intended to be more challenging than the non-bonus homework questions.

Please refer to the notes and slides posted on the website if you need to recall the material discussed
in the lectures.
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https://www.overleaf.com/read/trgwdgvczjkh
https://guides.library.upenn.edu/latex


1 Written Questions (35 points + 7 bonus points)

Problem 1: Kernels (13 points + 4 bonus points)

In this problem we will show that several algebraic operations preserve validity of a kernel.

1.1 (9 points) Consider two kernel functions k1 and k2 and their feature maps ϕ1 and ϕ2 respec-
tively. In particular,

k1(x, x
′) = ϕ1(x)

⊤ϕ1(x
′) and k2(x, x

′) = ϕ2(x)
⊤ϕ2(x

′).

For each of the following kernel functions, show that it is a valid kernel. Specifically, design a
feature map ϕ using ϕ1, ϕ2 such that k(x, x′) = ϕ(x)⊤ϕ(x′).

(a) (2 point) k(x, x′) = c · k1(x, x′) for any c ≥ 0

(b) (2 points) k(x, x′) = k1(x, x
′) + k2(x, x

′)

(c) (5 points) k(x, x′) = k1(x, x
′) · k2(x, x′)

1.2 (4 points) Using the above properties, show that k′(x, x′) =
∑d

i=1 αik(x, x
′)i is a valid kernel

for any valid kernel k if αi ≥ 0 for all i ∈ [d].

Bonus (4 points) Show that k′(x, x′) = exp(min(x, x′)) is a valid kernel over input space X =
[0, 1].
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Problem 2: Gradient Descent (12 points)

Consider a training dataset S = {(x1, y1), . . . , (xm, ym)} where for all i ∈ [m], ∥xi∥2 ≤ 1 and
yi ∈ {−1, 1}. Suppose we want to run regularized logistic regression, that is, solve the following
optimization problem: for regularization term R(w),

min
w

1

m

m∑
i=1

log
(
1 + exp

(
−yiw

⊤xi

))
+R(w)

Recall: For showing that a twice differentiable function f is µ-strongly convex, it suffices to show
that the hessian satisfies: ∇2f ⪰ µI. Similarly to show hat a twice differentiable function f is
L-smooth, it suffices to show that the hessian satisfies: LI ⪰ ∇2f . Here I is the identity matrix of
the appropriate dimension.

2.1 (2 points) In the case where R(w) = 0, we know that the objective is convex. Is it strongly
convex? Explain your answer.

2.2 (3 points) In the case where R(w) = 0, show that the objective is 1-smooth.

2.3 (1 point) What is the convergence rate of gradient descent on this problem with R(w) = 0? In
other words, what is the asymptotic number of iterations needed to get within ϵ of the minimum?
Note: Do not derive the convergence rate, just provide the rate in terms of number of iterations T .

2.4 (5 points) Consider the following variation of the ℓ2 norm regularizer called the weighted ℓ2
norm regularizer: for λ1, . . . , λd ≥ 0,

R(w) =
d∑

j=1

λjw
2
j .

Show that the objective with R(w) as defined above is µ-strongly convex and L-smooth for µ =
2minj∈[d] λj and L = 1 + 2maxj∈[d] λj .

2.5 (1 point) What is the convergence rate of gradient descent on the regularized logistic regression
problem with the weighted ℓ2 norm penalty? In other words, what is the asymptotic number of
iterations needed to get within ϵ of the minimum?
Note: Do not derive the convergence rate, just provide the rate in terms of number of iterations T .
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Problem 3: SVM (10 points + 3 bonus points)

Consider running hard-margin kernel-SVM with the following kernel:

k(x, x′) =

{
1 if x = x′

0 otherwise.

Assume that the training dataset is S = {(x1, y1), . . . , (xm, ym)} such that all xi are distinct (that
is, for all i ̸= j, xi ̸= xj) and yi ∈ {−1, 1}. Further assume that S is balanced, that is, the number
of training examples with label 1 is the same as the number of training examples with label -1
(mathematically this means |{i : i ∈ [m], yi = 1}| = |{i : i ∈ [m], yi = −1}| = m/2 for even m).

3.1 (5 points) Recall that the dual objective is:

maximize over α − 1

2

m∑
i=1

m∑
j=1

αiαjyiyjk(xi, xj) +

m∑
i=1

αi

such that
m∑
i=1

αiyi = 0

∀i ∈ [m], αi ≥ 0.

Find the optimizer α∗ of the above optimization problem with the given kernel and dataset.

3.2 (2 points) Using α∗ from above show that the classifier learned is:

f(x) = sign

(
m∑
i=1

yi1[x = xi]

)
.

3.3 (1 point) What is the error of the classifier on the training dataset?

3.4 (2 points) What is the prediction on any x not seen in the training dataset? What does this
say about the generalization error of this classifier?

Bonus (3 points) Find the classifier learned when we remove the balanced assumption. Express
it in terms of m+ (the number of training examples with label 1) and m− (the number of training
examples with label -1).
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2 Programming Questions (32 points + 2 bonus points)

Use the link here to access the Google Colaboratory (Colab) file for this homework. Be sure to
make a copy by going to “File”, and “Save a copy in Drive”. As with the previous homeworks, this
assignment uses the PennGrader system for students to receive immediate feedback. As noted on
the notebook, please be sure to change the student ID from the default ‘99999999’ to your 8-digit
PennID.

Instructions for how to submit the programming component of HW 3 to Gradescope are included
in the Colab notebook. You may find this PyTorch linear algebra reference and this general
PyTorch reference to be helpful in perusing the documentation and finding useful functions for
your implementation.
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https://drive.google.com/file/d/13NO4qD-4x2rgl8ckRA3sQ0fdfU6mio4u/view?usp=sharing
https://pytorch.org/docs/stable/linalg.html
https://pytorch.org/docs/stable/torch.html
https://pytorch.org/docs/stable/torch.html
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